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1. Proofs of Propositions 1-3
For convenience we repeat the propositions.

Proposition 1. Let µ ∈ (0, 1) and ν > 0 be given, and let
v∗ be the update vector given by

v∗ = −
(
(1− µ)H + µ~H + νI

)−1(
(1− µ)g + µg̃

)
. (1)

If mΨ(v∗) < 0 and mΨ̃(v∗) < 0, then there exists a β > 0
and ν′ > 0 such that v∗ is also the solution of

min
v

max {mΨ(v), βmΨ̃(v)}+
ν′

2
‖v‖2. (2)

Proof. Eq. 2 can be restated as

min
v

max
λ∈[0,1]

(1− λ)mΨ(v) + λβmΨ̃(v) +
ν′

2
‖v‖2, (3)

from which we deduce the first-order optimality condition
with respect to v

v∗ = −
(
(1− λ)H + λβ~H + ν′I

)−1(
(1− λ)g + λβg̃

)
= −

(
(1− λ)H + λβ~H + ν′I

1− λ+ λβ

)−1(
(1− λ)g + λβg̃

(1− λ) + λβ

)
= −

(
(1− µ)H + µ~H + νI

)−1(
(1− µ)g + µg̃

)
, (4)

where we identify µ = λβ/(1− λ+ λβ) and ν = ν′/(1−
λ+λβ). Given two of the values µ, λ and β, the remaining
one is determined by

β =
µ(1− λ)

λ(1− µ)
λ =

1

1 + β(1/µ− 1)
. (5)

From µ = λβ/(1−λ+λβ) ∈ (0, 1) we deduce that 0 < λβ
and λβ < 1 − λ + λβ, therefore λ < 1. Since λ ∈ [0, 1]
the inequality λβ > 0 implies λ > 0 and β > 0. Thus, λ ∈
(0, 1) and β > 0. Since λ is dual optimal and is strictly in
the interior of [0, 1], we have generalized complementarity,

0 ∈ ∂λ
(
(1− λ)mΨ(v∗) + λβmΨ̃(v∗)

)
+ ∂λı[0,1](λ)

= {βmΨ̃(v∗)
)
−mΨ(v∗)}, (6)

where ∂λ is the subgradient w.r.t. λ. Hence, mΨ(v∗) =
βmΨ̃(v∗)

)
and β is nothing else than the ratio β =

mΨ(v∗)/mΨ̃(v∗) (which implies β > 0 using the assump-
tions). Therefore (v∗, λ) is a primal-dual pair satisfying
complementary slackness (or primal-dual optimality condi-
tions). Further, ν′ = ν(1 − λ + λβ) > 0 is also strictly
positive.

Proposition 2. Let g and g̃ 6= 0. If g + γg̃ = 0 for some
γ ≥ 0, then x0 is locally Pareto critical for (Ψ, Ψ̃). Oth-
erwise there exists a ν > 0 and a µ ∈ (0, 1) such that v∗

given by Eq. 1 satisfies mΨ(v∗) < 0 and mΨ̃(v∗) < 0. In
particular, a universally admissible choice for µ is given by
µ = ‖g‖

‖g‖+‖g̃‖ . This in turn implies Ψ(x0 + v∗) < Ψ(x0)

and Ψ̃(x0 + v∗) < Ψ̃(x0).

Proof. The first part is clear. Now as assume g + γg̃ 6= 0
for all γ > 0. Choose µ = ‖g‖/(‖g‖+‖g̃‖) (and therefore
1− µ = ‖g̃‖/(‖g‖+ ‖g̃‖)) and define

ĝ := (1− µ)g + µg̃ 6= 0. (7)

We have

ĝTg = (1− µ)gTg + µg̃Tg

=
1

‖g‖+ ‖g̃‖
(
‖g̃‖‖g‖2 + ‖g‖g̃Tg

)
= µ

(
‖g̃‖‖g‖+ g̃Tg

)
(8)

ĝT g̃ = (1− µ)gT g̃ + µg̃T g̃

=
1

‖g‖+ ‖g̃‖
(
‖g̃‖gT g̃ + ‖g‖‖g̃‖2

)
= (1− µ)

(
gT g̃ + ‖g‖‖g̃‖

)
. (9)

Since g and g̃ are assumed to be non-zero and not of oppo-
site direction, we have that ‖g̃‖‖g‖ + g̃Tg > 0. Together
with µ ∈ (0, 1) we deduce that ĝTg > 0 and ĝT g̃ > 0.
Hence, −ĝ is a descent direction for both Ψ and Ψ̃.

Setting µ = ‖g‖/(‖g‖ + ‖g̃‖) is a natural but not the
only choice. E.g., if gT g̃ > 0 (i.e. the angle between g
and g̃ is less than π/2), then setting µ ∈ (0, 1) arbitrarily
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is admissible. In general, the range of allowed values for µ
shrinks with increasing angles between g and g̃.

Define Ĥ := (1 − µ)H + µ~H and let UΛUT be the eigen-
value decomposition of Ĥ, where Λ is a diagonal matrix
with elements λi ≥ 0. Further, let η be the largest eigen-
value in H and ~H. Therefore λi ∈ [0, η]. Recall that
v∗ := −(Ĥ + νI)−1ĝ is the update direction. Now,

−(v∗)Tg = ĝT (Ĥ + νI)−1g = ĝT U(Λ + νI)−1UTg

= ĥT (Λ + νI)−1h, (10)

where we introduced h := UTg and ĥ := UT ĥ. Further, let
κi := hTi ĥi. We therefore read

−(v∗)Tg =
∑
i

κi
λi + ν

=
∑
i:κi≥0

κi
λi + ν

+
∑
i:κi<0

κi
λi + ν

≥
∑
i:κi≥0

κi
η + ν

+
∑
i:κi<0

κi
ν
. (11)

Define κ+ :=
∑
i:κi≥0 κi ≥ 0 and κ− :=

∑
i:κi<0 κi ≤ 0.

Thus,

−(v∗)Tg = ĝT (Ĥ + νI)−1g ≥ κ+

η + ν
+
κ−

ν
. (12)

A sufficient condition for (v∗)Tg < 0 is therefore given by

−(v∗)Tg ≥ κ+

η + ν0
+
κ−

ν0
> 0 (13)

or

(κ+ + κ−)ν0 > −κ−η. (14)

Recall that κ− ≤ 0, therefore the r.h.s. is non-negative, and
that

κ+ + κ− =
∑
i

κi = ĥTh = ĝTg > 0. (15)

Therefore we read the sufficient condition

ν0 >
|κ−|η
ĝTg

. (16)

for −(v∗)Tg > 0 (or (v∗)Tg < 0) to hold. Analogously
we obtain a 2nd constraint on ν0 that implies (v∗)T g̃ < 0,

ν0 >
|κ̃−|η
ĝT g̃

, (17)

where h̃ := UT h̃ and κ̃− =
∑
i:ĥih̃i<0 ĥ

T
i h̃i.

This means that for sufficiently large

ν > max

( |κ−|η
ĝTg

,
|κ̃−|η
ĝT g̃

)
(18)

the update vector v∗ is a descent direction for both Ψ and
Ψ̃. The final requirement on ν is, that the induced step is
not too large in order to obtain reductions in the quadratic
surrogates mΨ and mΨ̃. If the quadratic model for Ψ and Ψ̃
are majorizers as assumed, then

Ψ(x + v) ≤ mΨ(v) = Ψ(x0) +
1

2
vT Hv + gTv

≤ Ψ(x0) +
η

2
‖v‖2 + gTv

Ψ̃(x + v) ≤ mΨ̃(v) = Ψ̃(x0) +
1

2
vT ~Hv + g̃Tv

≤ Ψ̃(x0) +
η

2
‖v‖2 + g̃Tv

for all v. Observe that

‖v∗‖2 = ĝT (Ĥ + I)−2ĝ ≤ ‖ĝ‖2
(η + ν)2

. (19)

Thus,

‖ĝ‖2
(η + ν)2

+ gTv∗ =
‖ĝ‖2

(η + ν)2
− ĝT (Ĥ + νI)−1v∗ < 0

(20)

is a sufficient condition for 1
2 (v∗)T Hv + gTv∗ < 0 (anal-

ogously for the second constraint). Using Eq. 12 an even
stronger sufficient condition for ν is

‖ĝ‖2
(η + ν)2

− ν(κ+ + κ−) + ηκ−

ν(η + ν)
< 0 (21)

or

ν‖ĝ‖2
η + ν

< ν(κ+ + κ−) + ηκ−, (22)

since ν > 0. The l.h.s. converges to ‖ĝ‖2 and the r.h.s. ap-
proaches ν(κ+ + κ−) = νĝTg → ∞ for ν → ∞ (since
ĝTg > 0), hence there exists a ν1 > 0 such that Eq, 22
holds for all ν > ν1. More specifically, consider the map-
ping

f(ν) :=
ν‖ĝ‖2
η + ν

− ν(κ+ + κ−)− κ−η.

f is monotonically decreasing for

ν > max

{
ν0,

√
η

κ+ + κ−
‖ĝ‖ − η

}
(23)

and limν→∞ f(ν) → −∞. Hence there exists a ν1 > ν0

such that f(ν) < 0 for all ν > ν1. The symmetric reasoning
applies to ensure that 1

2 (v∗)T ~Hv∗ + g̃Tv∗ < 0.
Since mΨ and mΨ̃ are assumed to be majorizers of

Ψ(c)̇−Ψ(x0) and Ψ̃(c)̇−Ψ̃(x0), respectively,mΨ < 0 and
mΨ̃ < 0 imply Ψ(x0 + v∗) < Ψ(x0) and Ψ̃(x0 + v∗) <
Ψ̃(x0).



The assumption that surrogate models are majorizers can
be replaced by the assumption that Ψ and Ψ̃ have a Lips-
chitz gradient (or equivalently bounded second derivatives).

Proposition 3. If Ψ(x0 +v∗) > Ψ(x0), thenmΨ(v∗) > 0.
If Ψ̃(x0 + v∗) > Ψ̃(x0), then mΨ̃(v∗) > 0.

This is a direct consequence of Ψ(x0) + mΨ(v) and
Ψ̃(x0)+mΨ̃(v) being majorizers for Ψ and Ψ̃, respectively.

2. More results for bundle adjustment
The complete list of instances is: ladybug-73,

ladybug-138, ladybug-318, ladybug-598, trafalgar-126,
trafalgar-138, trafalgar-201, trafalgar-225, trafalgar-257,
dubrovnik-150, dubrovnik-202, dubrovnik-253, dubrovnik-
308, dubrovnik-356, venice-89, venice-245, venice-427,
venice-744, final-93, final-394. The numerical results were
obtained on an AMD Ryzen 2950X workstation with 64GB
of memory. Our C++ implementation is single threaded.

Fig. 1 visualizes the performance profile for full bundle
adjustment (optimizing over focal lengths and lens distor-
tion parameters as well). The performance profiles mir-
ror the results for linearized and metric bundle adjustment
given in the main text (with the LM-MOO variants leading
the other methods).

Figs. 2-7 depict the evolution of the best encountered
objective w.r.t. wall clock time for all bundle adjustment
datasets and configuration (linearized, metric, full).

3. Refining RANSAC solutions
In principle all considered methods for robust cost min-

imization are also suitable for low-dimensional parametric
fitting problems such as homography and fundamental ma-
trix estimation. In such settings random sampling scheme
such as RANSAC can be used to determine initial esti-
mates of the unknown model parameters, which are sub-
sequently refined by any robust cost optimization method.
We ran experiments on homography and fundamental ma-
trix datasets [1] and observed, that the choice of optimiza-
tion method has very little impact e.g. on the refined inlier
ratio. Even IRLS works competitively for these problems.
Detailed results are given below.

Table 1 depicts results for a slightly simplified funda-
mental matrix refinement task, where the initial solution is
determined by a vanilla RANSAC method. The refinement
objective is a robustified Sampson error (not solely an al-
gebraic error), but the rank-2 constraint is dropped to avoid
the highly non-linear constraint (or parametrization). The
inlier threshold is 1.5 pixels (as suggested in [1]), and we
limit the RANSAC iterations to 10000 (or less, according
to the RANSAC formula at 99% confidence). The num-
ber of refinement iterations is 50. The numbers in Table 1
are averaged over 100 runs. Each method for robust cost

minimization received the same set of initial RANSAC so-
lutions.

Interestingly, GOM+ wins most of the time, with LM-
MOO usually coming in second. Using 20 or 100 refine-
ment iterations yields similar numbers and ranking. Over-
all, in all datasets the difference between the means is sig-
nificantly smaller than the respective standard deviations.
Hence, we do at this point not consider the ranking of meth-
ods statistically significant for the purpose of refining an ini-
tial RANSAC solution. Table 2 summarizes the correspond-
ing results for robust homography estimation. The overall
picture is similar to the one of fundamental matrix estima-
tion.
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and Jan-Michael Frahm. Usac: a universal framework for
random sample consensus. IEEE Trans. Pattern Anal. Mach.
Intell., 35(8):2022–2038, 2013. 3, 4
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Figure 1: Performance profiles for full bundle adjusted computed from 20 bundle adjustment instances.

RANSAC IRLS joint HQ GOM+ LM-MOO
1 1396.68 (146.15) 1463.87 (145.04) 1457.17 (146.46) 1472.36 (138.32) 1470.41 (143.31)
2 298.72 ( 66.93) 312.29 ( 68.82) 312.40 ( 68.34) 312.75 ( 66.82) 312.33 ( 68.65)
3 365.32 ( 61.93) 378.45 ( 63.02) 380.28 ( 62.69) 391.34 ( 61.36) 382.00 ( 63.57)
4 170.63 ( 92.72) 207.79 (111.44) 208.28 (110.23) 239.66 (117.09) 220.53 (116.82)
5 145.95 ( 20.82) 151.80 ( 21.77) 153.65 ( 22.05) 156.24 ( 23.37) 154.16 ( 22.14)
6 103.76 ( 34.10) 114.90 ( 36.67) 116.55 ( 36.99) 119.94 ( 35.98) 116.63 ( 37.17)
7 387.81 ( 11.63) 397.64 ( 5.51) 397.86 ( 5.57) 393.15 ( 4.69) 398.27 ( 6.14)
8 684.15 ( 44.15) 701.10 ( 43.44) 703.21 ( 41.81) 714.17 ( 28.71) 704.46 ( 40.45)
9 2603.35 ( 19.10) 2614.35 ( 5.04) 2614.30 ( 5.21) 2615.50 ( 6.13) 2614.75 ( 5.19)

10 2240.34 ( 68.02) 2295.74 ( 44.98) 2295.01 ( 38.21) 2303.56 ( 36.77) 2298.62 ( 46.63)
11 209.01 ( 20.92) 214.56 ( 20.61) 214.90 ( 20.66) 215.99 ( 20.57) 214.79 ( 20.72)

Table 1: Inlier counts for fundamental matrix estimation for the 11 image pairs provided in [1]. The figures are the number
of inliers at a 1.5 pixels threshold, and the respective standard deviation in parentheses. Bold corresponds to the winning
(highest) number, and italics to the runner up. Overall, the differences between the means are significantly smaller than the
respective standard deviations. Therefore we do at this point not consider the ranking of methods statistically significant.

RANSAC IRLS joint HQ GOM+ LM-MOO
1 1270.84 ( 93.62) 1411.00 ( 0.00) 1411.00 ( 0.00) 1411.00 ( 0.00) 1411.00 ( 0.00)
2 944.99 ( 60.13) 998.00 ( 0.00) 998.00 ( 0.00) 998.00 ( 0.00) 998.00 ( 0.00)
3 30.01 ( 18.71) 45.42 ( 27.53) 46.70 ( 26.96) 39.94 ( 18.98) 48.51 ( 28.11)
4 660.58 ( 45.80) 705.00 ( 0.00) 704.91 ( 0.38) 709.00 ( 0.00) 704.98 ( 0.14)
5 224.74 ( 63.35) 289.34 ( 46.85) 288.83 ( 46.70) 297.09 ( 34.54) 293.76 ( 42.31)
6 31.41 ( 15.00) 57.33 ( 23.72) 57.84 ( 22.32) 68.49 ( 12.36) 62.48 ( 20.54)
7 60.45 ( 5.11) 60.59 ( 5.78) 61.40 ( 5.58) 61.69 ( 6.35) 60.73 ( 5.79)
8 176.70 ( 4.52) 179.00 ( 0.00) 179.00 ( 0.00) 179.00 ( 0.00) 179.00 ( 0.00)
9 24.63 ( 27.19) 41.65 ( 47.28) 43.52 ( 48.26) 71.09 ( 54.39) 47.42 ( 50.78)

10 18.56 ( 1.63) 18.52 ( 1.72) 19.38 ( 1.72) 19.55 ( 1.80) 18.59 ( 1.76)

Table 2: Inlier counts for homography estimation for the 10 image pairs provided in [1]. The figures are the number of
inliers at a 2 pixels threshold, and the respective standard deviation in parentheses. Bold corresponds to the winning (highest)
number, and italics to the runner up. Again, the differences between the means are significantly smaller than the respective
standard deviations.
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Figure 2: Evolution of the best cost for linearized bundle adjustment (datasets 1-10).
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Figure 3: Evolution of the best cost for linearized bundle adjustment (datasets 11-20).
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Figure 4: Evolution of the best cost for metric bundle adjustment (datasets 1-10).
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Figure 5: Evolution of the best cost for metric bundle adjustment (datasets 11-20).
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Figure 6: Evolution of the best cost for full bundle adjustment (datasets 1-10).
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Figure 7: Evolution of the best cost for full bundle adjustment (datasets 11-20).


