Pareto meets Huber: Efficiently avoiding poor minima in robust estimation

Christopher Zach (christopher.m.zach@gmail.com) Chalmers University of Technology, Sweden Guillaume Bourmaud (guillaume.bourmaud@u-bordeaux.fr) University of Bordeaux, France

1) Introduction

Problem statement

How to obtain an algorithm able to quickly decrease $\Psi(\mathbf{x})$ while avoiding poor local minima?

Minimize a cost function involving robust data terms

$$
\min_{\mathbf{x}} \Psi(\mathbf{x}) \qquad w
$$

$$
\Psi(\mathbf{x}) \qquad \text{with} \qquad \Psi(\mathbf{x}) = \sum_{i=1}^{N} \psi(\|\mathbf{r}_i(\mathbf{x})\|)
$$

where $\mathbf{r}_i : \mathbb{R}^p \to \mathbb{R}^n$ is the vectorial residual function and $\psi : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is a *robust kernel* function.

2) Contributions

min d \sum $\sqrt{ }$ $\bigg(\lambda \sum$ K $k=1$

1) we propose to use a Multi-Objective Optimization (MOO) approach to obtain an algorithm able of both avoiding poor local minima and quickly decreasing the target objective,

2) we derive an efficient Levenberg-Marquardt-MOO (LM-MOO) method yielding cooperative minimization steps.

State of the art NLLS-based robust estimation algorithms and their corresponding properties. (*) These rankings are observed experimentally on several computer vision problems.

université **BORDEAUX**

3) Creating a sequence of "guidance" costs

Scaled version of a robust kernel

$$
\psi_{\tau}(x) = \tau^2 \psi(x/\tau)
$$

Smoothed version of $\Psi(\mathbf{x})$

$$
\Psi_{\tau}(\mathbf{x}) = \sum_{i=1}^{N} \psi_{\tau}(\|\mathbf{r}_i(\mathbf{x})\|)
$$

Sequence of "guidance" costs provided as input of LM-MOO

$$
(\Psi^1,\ldots,\Psi^{K_{\max}})
$$

where

$$
\Psi^i(\mathbf{x})=\Psi_{2^{(i-1)}}(\mathbf{x})
$$

5: . *Gauss-Newton / IRLS model*

g^F . *Search direction*

 (\mathbf{x}_0) then \triangleright *Success to reduce* F^k

 \triangleright *Update* \mathbf{x}_0 \triangleright *Failure to reduce* Ψ *and* Ψ^k

 $\nu \leftarrow \nu/10$ \triangleright *Decrease the damping parameter*
else \triangleright *Failure to reduce* F^k $\nu \leftarrow 10\nu$ **b** Increase the damping parameter

22: **return** the solution of a standard Levenberg-Marquardt method given current point x_0

$$
\big|_{j}+\mathbf{t}_{i}))-\hat{\mathbf{p}}_{ij} \big)
$$

References

[1] Peter J Green. Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives. 1984 [2] Bill Triggs, Philip McLauchlan, Richard Hartley, and Andrew Fitzgibbon. Bundle adjustment - A modern synthesis. 2000 [3] Chris Engels, Henrik Stewénius, and David Nistér. Bundle adjustment rules. 2006 [4] Christopher Zach. Robust bundle adjustment revisited. 2014

Challenges

- large number of local minima
- large number of parameters to estimate

[5] Christopher Zach and Guillaume Bourmaud. Iterated lifting for robust cost optimization. 2017 [6] Andrew Blake and Andrew Zisserman. Visual reconstruction. 1987 [7] Christopher Zach and Guillaume Bourmaud. Descending, lifting or smoothing: Secrets of robust cost optimization. 2018

-
-