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1) Introduction

Problem statement
Minimize a cost function involving robust data terms

min
x

Ψ(x) with Ψ(x) =

N∑
i=1

ψ(‖ri(x)‖)

where ri : Rp → Rn is the vectorial residual function and
ψ : R≥0 → R≥0 is a robust kernel function.

Challenges
• large number of local minima

• large number of parameters to estimate

How to obtain an algorithm able to quickly de-
crease Ψ(x) while avoiding poor local minima?
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2) Contributions

1) we propose to use a Multi-Objective Optimization (MOO)
approach to obtain an algorithm able of both avoiding poor local
minima and quickly decreasing the target objective,

2) we derive an efficient Levenberg-Marquardt-MOO (LM-
MOO) method yielding cooperative minimization steps.

IRLS [1], Triggs [2],
√
ψ [3] HQ [4], k-HQ [5] GOM [6] GOM+ [7] LM-MOO (ours)

Quickly decreases target cost*

Avoids poor local minima*

Never ignores target cost 3 5 5 5 3

No extra variables 3 5 3 3 3

State of the art NLLS-based robust estimation algorithms and their corresponding properties.
(*) These rankings are observed experimentally on several computer vision problems.

5) Results

Bundle adjustment Dense correspondence

min
{Ri,ti}i,{Xj}j

∑
i,j
ψ
(
fiηi (π(RiXj + ti))− p̂ij

)
min
d

∑
p∈V

λ K∑
k=1

ψdata(dp − d̂p,k) +
∑

q∈N (p)

ψreg(dp − dq)
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Best encountered objective values obtained versus wall clock time as reported by different
methods for linearized (top) and metric (bottom) bundle adjustment instances.
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Top: Initial best-cost depth and solutions of joint HQ, GOM+ and LM-MOO, respectively, for the
“teddy” and “cones” stereo pair. Bottom: best objectives reached vs. runtime for different methods.

3) Creating a sequence of "guidance" costs

Scaled version of a robust kernel

ψτ (x) = τ2ψ(x/τ)
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Smoothed version of Ψ (x)

Ψτ (x) =

N∑
i=1

ψτ (‖ri(x)‖)
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Sequence of "guidance" costs provided as input of LM-MOO

(Ψ1, . . . ,ΨKmax) where Ψi(x) = Ψ2(i−1)(x)

4) Multi-objective Levenberg-Marquardt method (LM-MOO)

Require: Target Ψ and guidance costs (Ψ1, . . . ,ΨKmax)
Require: Initial solution x0, parameter, ν > 0

1: k ← Kmax

2: repeat
3: µ← ‖∇Ψ(x0)‖

‖∇Ψ(x0)‖+‖∇Ψk(x0)‖
4: F k ← (1− µ)Ψ + µΨk

5: . Gauss-Newton / IRLS model
6: gF ← ∇F k(x0) HF ← ∇2F k(x0)

7: v← −
(
HF + νI

)−1
gF . Search direction

8: x+ ← x0 + v
9: if F k(x+) < F k(x0) then . Success to reduce F k

10: strong← Ψ(x+)<Ψ(x0) ∧Ψk(x+)<Ψk(x0)
11: stop← TEST-STOPPING(Ψ, Ψk, x0, x+)
12: if strong and not stop then
13: x0 ← x+ . Update x0

14: else . Failure to reduce Ψ and Ψk

15: k ← k − 1 . Go to next guidance function
16: end if
17: ν ← ν/10 . Decrease the damping parameter
18: else . Failure to reduce F k

19: ν ← 10ν . Increase the damping parameter
20: end if
21: until k = 0
22: return the solution of a standard Levenberg-Marquardt method given current point x0
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