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Abstract

Robust cost optimization is the task of fitting parameters
to data points containing outliers. In particular, we focus on
large-scale computer vision problems, such as bundle ad-
justment, where Non-Linear Least Square (NLLS) solvers
are the current workhorse. In this context, NLLS-based
state of the art algorithms have been designed either to
quickly improve the target objective and find a local min-
imum close to the initial value of the parameters, or to have
a strong ability to avoid poor local minima. In this paper,
we propose a novel algorithm relying on multi-objective op-
timization which allows to match those two properties. We
experimentally demonstrate that our algorithm has an abil-
ity to avoid poor local minima that is on par with the best
performing algorithms with a faster decrease of the target
objective.

1. Introduction

Many computer vision problems can be stated as find-
ing the parameters of a generative model that explain best
the observed data points. The assumption, that the ob-
served data points are functions of unknown parameters cor-
rupted by known Gaussian noise, leads to non-linear least-
squares (NLLS) minimization tasks to obtain a maximum-
likelihood estimate of the unknowns. One advantage of
NLLS problems is that minimizers can be found efficiently
by leveraging second-order methods. In practice not all ob-
servations are just corrupted by non-problematic Gaussian
noise, but an unknown fraction of data points may be proper
outliers subject to an arbitrary (but independent) noise pro-
cess. In order to cope with such outlier data points, robust
estimation (a.k.a. m-estimation [18]) replaces the squared
residuals in the NLLS problem with terms based on so-
called robust kernels (or robust functions), which reduces
the impact of large residuals. When the amount of out-
liers is large compared to the number of inliers, as it is the
case for difficult matching scenarios, it is necessary to use
a non-convex kernel, such as Tukey’s Biweight, to signifi-
cantly reduce the influence of outliers. However, summing
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such non-convex functions results in an overall highly non-
convex cost function with many local minima. As a conse-
quence, standard approaches such as Iterated Reweighted
Least Squares (IRLS), which performs well with convex
kernels (e.g. Huber kernel), easily get trapped in poor lo-
cal minima for non-convex robust kernels. In order to avoid
those poor local minima, state of the art approaches either
smooth or alternatively “lift” the cost function before ap-
plying an NLLS solver. Thus, both types of methods effec-
tively modify or distort the target objective to some extent.
In the specific context, where the practitioner seeks a
compromise between efficiency and accuracy, as e.g. in
real-time applications, it is also important to select an al-
gorithm that quickly decreases the target objective. Such
behavior allows the practitioner to stop the optimization
process at any time (e.g. when a time budget is exhausted)
with the guarantee that the initial cost was significantly re-
duced. Smoothing approaches do not possess this feature
while, as it experimentally shown in the paper, lifting-based
approaches sometimes have troubles avoiding poor minima.
To overcome these limitations, we propose a novel NLLS-
based algorithm that is inspired by Multi-Objective Opti-
mization (MOO). To the best of our knowledge, this is the
first robust estimation algorithm that both quickly decreases
the target objective and possesses a strong ability to avoid
poor local minima. More precisely, our contributions are:

1. we identify a major element of the success of lifting-
based approaches and are therefore able to easily con-
struct failure cases,

2. we propose to use an MOO approach to obtain an al-
gorithm able of both avoiding poor local minima and
quickly decreasing the target objective,

3. and we derive an efficient Levenberg-Marquardt-MOO
method yielding cooperative minimization steps.

The rest of the paper is organized as follows: Sec. 2 dis-
cusses the related work while Sec. 3 introduces important
definitions and notations regarding robust estimation. Our
contributions are detailed in Sec. 4 and Sec. 5. Experimen-
tal results and a conclusion are provided in Sec. 6 and 7,
respectively.
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Table 1: State of the art NLLS-based robust estimation algorithms and their corresponding properties. (*) These rankings are

observed experimentally on several computer vision problems.

2. Literature review

We discuss the literature related to robust estimation be-
low, but mostly limit the exposition to methods utilizing
a second-order NLLS solver'. In this context, the current
workhorse for robust cost estimation is the IRLS algorithm
[15]. It directly tries to minimize the target cost function
by iteratively fitting a (majorizing) quadratic model to the
underlying robust kernel and applying a 2nd-order solver
to the resulting NLLS problem. Several variants of this
approach have been proposed, e.g. [28, 9], that essentially
utilize different quadratic models. While these approaches
usually converge quickly and have the desirable property of
optimizing the target cost function at each step, they lack a
mechanism to avoid poor local minima, and therefore easily
get stuck in a poor solution.

One way of avoiding poor local minima is to “lift” the
target cost function into a higher dimensional space by in-
troducing so called “lifting” variables and apply an NLLS
solver to the resulting objective. The construction is based
on “half-quadratic” (HQ) minimization [12, 13, 2, 3], and
it was experimentally shown that joint optimization of this
half-quadratic cost over all unknowns (original and lifting
ones) reaches significantly better local minima than IRLS
at only a slight increase of run-time [30, 31]. Nevertheless,
as it is shown in sec. 4, the ability of HQ-based approaches
to avoid poor local minima relies on some assumptions that
can be violated in computer vision applications.

Another way of avoiding poor local minima consists in
building surrogate cost functions that have fewer local min-
ima than the target cost function. Most of these meth-
ods fall under the umbrella term of Graduated Optimiza-
tion Methods (GOM), but come in a large number of flavors
(e.g. [20, 4, 26, 29, 8, 24, 23, 25, 32]). GOM-based ap-
proaches sequentially optimize a smoothed surrogate cost
function (starting from a highly smoothed version of the
target cost function), using e.g. IRLS, and use its minimizer

In this work we mostly consider “non-parametric” estimation prob-
lem, where the number of unknowns is in the order of available obser-
vations. Refining randomly sampled, low-parametric models is e.g. ad-
dressed in [22].

as initialization to optimize the next, less-smoothed surro-
gate cost function. This is done until the algorithm reaches
the final optimization problem, i.e. the target cost function.
In practice, GOM-based algorithms are computationally ex-
pensive, since they solve a sequence of optimization prob-
lems, but they exhibit a strong ability to reach good local
minima. Early stopping can be applied to accelerate the
graduated optimization methods (e.g. [32]), however even
in this case, the ability of the algorithm to quickly decrease
the target cost is limited.

In this paper, we propose an approach inspired by MOO,
that combines the advantages of both IRLS and GOM-based
approaches, i.e. it seeks to decrease the target cost at each
step of the algorithm while maintaining a strong ability to
avoid poor local minima. Relevant properties of the afore-
mentioned methods are summarized in Table 1.

Close in spirit to our work are multi-objectivization
methods [21, 19, 16], which aim to find better minima of
single objective problems via MOO. A single objective can
be converted to multiples ones by decomposition [21, 16]
or by adding helper functions [19]. Nevertheless, the tar-
geted problem instances in these works are hard combina-
torial problems, and the MOO solvers are based on evolu-
tionary algorithms and thus not immediately applicable to
our continuous problem instances.

3. Background on robust estimation

We now introduce important definitions as well as our
notations regarding robust estimation. In this paper, we are
interested in minimizing cost functions of the form:

N

min U(x)  with  U(x) =Y o([n)), @)

X
i=1

where N is the number of data points, x € R? are the pa-
rameters of interest, r; : RP — R" is the vectorial resid-
ual function corresponding to data point y; € R™ and ||-||
is the L2?-norm. In a slight abuse of vocabulary, we call
||r;(x)|| the residual corresponding to data point y;. The
function ¢ : R>g — R is a robust kernel, i.e. 1)(0) = 0,



¥"(0) = 1, and the mapping z ~— (1/2z) is monoton-
ically increasing and concave. To gain some intuition re-
garding the previous definition, let us highlight the fact that
robust kernels show subquadratic behavior. Consequently,
we have 9 (||r; (x)|)) < [|rs(x)||?/2, i.e. v» downweights the
cost of large residuals but, 1 behaves like = — 22 /2 for
x ~ 0. We will also need a way to transform a given robust
kernel 1) into another (less) robust kernel that is easier to
optimize. To do so, we will use the following modification
of ¢: for 7 > 0 we denote the scaled kernel by 1., i.e.
- (z) = 72¢(x/7). It can be verified that 9, is again a
robust kernel for all 7 > 0, and that 1) is an upper bound
of ¢ for 7 > 1. Thus, scaling a kernel v, with 7 > 1,
produces another robust kernel - that is more sensitive to
outliers than 1. ¢, for 7 > 1 implies also a smoothed cost
W, with fewer local minima than the original cost function
W (illustrated in Fig. 1).
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Figure 1: The impact of scaling a robust kernel on the diffi-
culty of a robust cost.

4. The limitations of joint half-quadratic opti-
mization

The aim of this section is to present two observations
about joint HQ minimization (i.e. lifting-based approaches)
that allow to reveal some limitations of these methods, and
thus justifies our choice of not basing our method on them:
first, we empirically show that initializing with optimistic
confidence weights (which correspond to the lifting vari-
ables for joint HQ minimization) is critical, and second, we
present a clear failure case for joint HQ optimization.

Let us first recall that IRLS can be derived by apply-
ing alternating optimization to the HQ cost (i.e. freeze the
parameters and find the optimal value for the lifting vari-
ables, then freeze the (optimal) lifting variables and apply a
Levenberg-Marquardt (LM) step to the parameters).

In order to get some insight on the importance of the ini-
tial value of lifting variables/confidence weights for joint
HQ minimization, we select a subset of the “bundle adjust-
ment in the large” dataset [1], and apply IRLS and joint
HQ minimization methods (and variations thereof) on [lin-
earized bundle adjustment instances. We use linearized
residuals to factor out additional effects of using non-linear
residuals. We chose the smooth truncated kernel [33] with
scale parameters o € {1,1/2} as underlying robust kernel.

Figure 2 illustrates the objectives reached after 100 itera-
tions of the corresponding LM solver. Here IRLS denotes
the standard IRLS approach, IRLS-alt is a version of IRLS,
where the order of alternation steps is reversed (given confi-
dence weights update the parameters, given parameters up-
date the weights, and repeat). Further, the initial confidence
weights are set to 1, therefore the first iteration of IRLS-
alt is a pure non-robust fitting step while the rest of the it-
erations are standard IRLS steps. HQ refers to joint HQ
minimization (with lifting variables also initialized to 1),
and HQ* refers to joint HQ with optimal initial lifting vari-
ables (i.e. set to the IRLS induced ones). It can be seen in
Fig. 2 that IRLS-alt outperforms HQ* on the majority of in-
stances and is close to joint HQ minimization in a number
of datasets. We conclude, and this is one insight of this sec-
tion, that initializing confidence weights to one (or at least
optimistically) is of higher relevance for reaching a good
minimum than the choice of joint or alternating optimiza-
tion strategies.
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Figure 2: Final objectives for linearized bundle adjustment
instances with scale parameter ¢ = 1 (top) and ¢ = 1/2
(bottom). Observe how IRLS-alt often outperforms HQ*,
hence initializing the confidence weights optimistically is
of higher relevance for reaching a good minimum than the
choice of a joint or alternating minimization strategy.

One important failure case for joint HQ minimization,
and this is the second insight of this section, is the presence
of mutually exclusive residuals, i.e. when related groups of
residuals have at most one inlier residual that can be ex-
plained by optimally fitted parameters. Such mutually ex-
clusive residuals appear in 3D computer vision problems
e.g. when allowing multiple, non-unique correspondences.
Sparse 3D reconstruction and multi-object tracking are nat-
urally formulated with such multiple matches. Maximum
a-posteriori (MAP) estimation tasks can also fall into this



category, if the given clique potentials have multiple local
minima. This is usually the case for dense correspondence
estimation and for range image fusion. Figure 4 illustrates
results for a depth estimation task, where each pixel (i.e.
unknown) has K > 1 mutually exclusive residuals. The ex-
act robust objective is given in Sec. 6, but Fig. 3 illustrates
how photo-consistency scores are converted to a robust cost
problem by introducing terms for each of the K smallest
local minima in the cost profile. The starting point is the
same, randomly initialized depth map (to enhance the visual
differences). Note that the underlying objective has linear
residuals, and therefore the only source of non-convexity
are the robust kernels. It can be seen in Fig. 4 that joint
HQ optimization returns increasingly poorer answers (com-
pared to the visually more appealing and consistent results
of the novel method we present in sec.5), when K is in-
creased. This is also reflected in the final objective values
reached by the methods (cf. Fig. 7).
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Figure 3: The conversion of photo-consistency scores into
a robust objective with multiple local minima.

-

(a) joint HQ (b) Proposed (c) joint HQ (d) Proposed

Figure 4: Depth map estimation results using different num-
bers of residuals per pixel (top K = 1, middle K = 2,
bottom K = 3 residuals per pixel).

In summary, in this section we have demonstrated that
the good practical performance of joint HQ minimization
relies on many residuals actually being inlier residuals (at
the optimal solution), and therefore initializing the confi-
dence weights optimistically is reasonable. If this assump-

tion is violated (e.g. only a small fraction of residuals can
be explained even for optimal parameters), then the limita-
tions of joint HQ minimization are revealed. Consequently,
our proposed method deviates significantly from joint HQ
minimization.

5. Levenberg-Marquardt method for multi-
objective optimization

Our optimization algorithm for robust costs relies on
multi-objective optimization to be able to (i) avoid poor lo-
cal minima while (ii) reducing the target cost function at
each iteration of the (underlying) NLLS solver. MOO has so
far very limited use in computer vision and machine learn-
ing, e.g. [27] recently proposes to use gradient-based MOO
to tackle multi-task learning. In our application of robusti-
fied non-linear least squares problems, we are strongly in-
terested in second-order optimization methods as first-order
methods show simply too slow convergence in practice.

In this section, we first briefly introduce MOO in sec.5.1
while our contributions are described in Sec.5.2 and 5.3.

5.1. Background on multi-objective optimization

If multiple differentiable cost functions (f1, ..., far) are
given, then a point x that minimizes all the objectives simul-
taneously does usually not exist. Instead, the goal of MOO
is to determine one or all (locally) Pareto critical points, i.e.
points x such that there is no common direction of strict
descent. Stated differently, moving in any direction around
a locally Pareto critical point x may improve several cost
functions but necessarily increases the cost of at least one
of the objectives (f1,..., fm)-

Methods to find a direction v (if it exists), that is a de-
scent direction for all costs, are proposed in [ |, 6]. In par-
ticular, [1 1] suggests the following quadratic program (QP),

m‘}nmlax VIV (%)} + 3v]. 2)

It is shown that x is Pareto critical iff the optimal value of
the QP is 0, otherwise the optimal v is a strict descent di-
rection for all f;. The method described in [6] explicitly
distinguishes between an initial cooperative phase to find a
Pareto critical solution, which is followed by an (optional)
competitive phase refining the solution along the so called
Pareto front. If M = 2, then a descent direction v is explic-
itly given by v = SV f1(x) + (1 — 8)V f2(x), where

B V()T (V falx) — ¥ fu(x))
F=1oy ( VA0 — Va2 )

for Vfi(x) # Vfa(x). If Vfi(x) = Vfa(x), then 8 €
[0, 1] arbitrarily. Finally, if v = 0, then x is Pareto critical.

Finding a Pareto critical point can be accelerated by us-
ing Newton’s method [10]. Using a local (convex) quadratic




model of each objective, a trial solution is determined that
maximizes the minimum decrease of each quadratic model.
However, even for the case of two objectives this amounts
to solve a quadratic program which is impractical for large-
scale problems such as bundle adjustment. Hence, in the
following sections, we propose a more scalable method that
allows to better apply multi-objective optimization to large-
scale robust estimation problems.

5.2. Efficient 2nd-order multi-objective solver

In this section we present an efficient second order
method for multi-objective minimization when we have ex-
actly two objectives. Thus, we are given objectives ¥ and
U, and the goal is to find a locally Pareto critical solution ef-
ficiently. In our application both ¥ and ¥ will be robustified
non-linear least squares objectives, but ¥ and U can be any
pair of functions for which a second order method is suit-
able. The only weak requirement is, that ¥ is in some sense
“easier” to minimize, i.e. ¥ is less prone of reaching a poor
local minimum. As such ¥ acts as a “guidance” function to
navigate around poor local minima of W. The construction
of U given U is usually application dependent, but if ¥ is a
robustified non-linear least squares problem, then there are
standard ways to design ¥ (e.g. the one described in Sec. 3).

In the following, let H and f be the (p.s.d.) approxima-
tions of the Hessians of ¥ and \il, respectively, at a current
linearization point xg. Further, let g and g be the corre-
sponding gradients. Thus, the local quadratic models at xg
are given by

1
U(xg+v) =~ U(x0) + §VTHV +glv=my(v)
7 ~ Lore a7
U(xg+v) =~ U(x0) + 7V ABv+g'v=mg(v). (3)

In the following, we also make the simplifying assumption
that my and my, are majorizing quadratic surrogates of ¥
and U, respectively (i.e. U(xo) +my(v) > ¥(xq +v) and
W(x)+mg (v) > ¥(xo+v) forall v). In particular, IRLS-
induced local quadratic models for linear residual functions
satisfy this requirement.

In [10] it is proposed to determine a search direction v
such that the minimal decrease in the quadratic models is

maximal, i.e. one seeks the solution of
min max {mg(v),mg(v)} . 4)

The idea of this convex program is that both objectives
shall decrease as much as possible (according to the local
quadratic models). Note that the optimal objective value of
the above quadratic program is non-positive, since v = 0
is feasible and has an objective value of 0. In contrast to
gradient-based MOO methods [ 1, 6] there is no closed
form solution for v given the Hessians {H,f} and gradi-
ents {g, g}, and optimizing the above quadratic program

requires an iterative solver. Thus, we aim for an approach
avoiding the explicit solution of Eq. 4.

Since ¥ acts only as a guidance function, the exact abso-
lute decrease in W is not significant, and therefore we relax
Eq. 4 by introducing a non-negative scale factor 3,

min max {mg (v), fmg(v)} . 5)
We provide a sufficient condition when Eq. 5 can be solved
for some 3 > 0 by just solving a single linear system. In
order to later handle non-linear residuals by regularizing the
update vectors, we consider a damped version of Eq. 5.

Proposition 1. Let 1 € (0,1) and v > 0 be given, and let
v* be the update vector given by

v = —((1— pH+ pl+vI) (1 - p)g + pg). (©)

If mg(v*) < 0and mg (v*) < 0, then there exists a 5 > 0
and v’/ > 0 such that v* is also the solution of

/
mvinmax{m\p(v),ﬂm\i,(v)}—l— %HV”Q 7
Proposition 1 means, that “strong” steps reducing both sur-
rogate quadratic models correspond to solving a cooperative
MOO step. Consequently, our algorithm will rely on solv-
ing Eq. 6 to be able to both avoid poor local minima (by
reducing ¥) and quickly improve the target cost U.

Proposition 2. Let g and g # 0. If g + vg = 0 for some
v > 0, then x is locally Pareto critical for (U, \i/) Oth-
erwise there exists a v > 0 and a 4 € (0,1) such that v*
given by Eq. 6 satisfies my (v*) < 0 and mg(v*) < 0. In
particular, a universally admissible choice for y is given by

_ el - . . *
B = gl+IET: This in turn implies ¥ (xg + v*) < ¥(xq)

and W(xg + v*) < ¥(x).

Proposition 2 essentially implies that sufficiently large
damping of v is guaranteed to yield a cooperative update
unless xq is already locally Pareto critical. Thus, propo-
sition 2 justifies the use of a stopping criterion that tests
whether the two gradients g and g are opposing or not.

Proposition 3. If ¥(xq+v*) > ¥(xg), then myg (v*) > 0.
If U(xo+v*) > U(x), then mg (v*) > 0.

Proposition 3 implies that the surrogate models mg and my,
will not disagree with their respective objectives ¥ and ]
for strong steps. As a consequence there is no need to test
my (v*) > 0 and mg (v*) > 0 explicitly in our algorithm.
The proofs of these propositions are given in the supple-
mentary material.



Algorithm 1 Multi-objective Levenberg-Marquardt method

Require: Target U and guidance costs (U1, ... Wimax)
Require: Initial solution xy and damping parameter v > 0
1ok« Kinax
2: repeat
W (x
Y Teree T T
4 FE e (1 — p)¥ + pW*
5: > Gauss-Newton / IRLS model
6: g VFk(Xo) Hp < VQFk(Xo)
7
8
9

Ve — (HF -+ Z/I) 71gp > Search direction
xT —x9+Vv

if F*(xT) < F¥(xg) then > Success to reduce F*

10: strong + U(xH) < W(xg) A UF(xH) < UF(x()
11: stop + TEST-STOPPING(V, U*, xg, xT)

12: if strong and not stop then

13: xg — xT > Update xq
14: else > Failure to reduce ¥ and U*
15: k < k—1 > Go to next guidance function
16: end if

17: v < v/10 > Decrease the damping parameter
18: else > Failure to reduce F*
19: v <+ 10v > Increase the damping parameter
20: end if

21: until £k =0

22: return the solution of a standard Levenberg-Marquardt
method given current point xg

5.3. The algorithm

We are now able to state the proposed multi-objective
Levenberg-Marquardt method, which we call “LM-MOO.”
We will allow a sequence of ‘“guidance” functions
(!, ..., WKmax) which are assumed to have decreasing
difficulty of finding a global minimum (similar to gradu-
ated optimization setting). The input of the method are the
initial solution xq and the initial value of the damping pa-
rameter v. The pseudo-code is given in Alg. 1. The algo-
rithm sequentially aims to cooperatively minimize both ¥
and U* until reaching an approximately Pareto critical so-
lution (which leads to a decrease of k). W* is usually more
similar to ¥ for smaller k. Once these guidance functions
are exhausted, a standard solver is applied on ¥ (which in
our implementation is just setting ¥° := W),

The function TEST-STOPPING determines whether the
current solution is sufficiently close to a stationary point of
FF¥ = (1—p)¥+pW*, In principle, testing for a strong step
decreasing both ¥ and W* is sufficient, but in practice this
condition alone is too conservative and leads to poor use of
computation time. Thus, we incorporate an additional test
to detect sufficient convergence.

We use two implementations for TEST-STOPPING. The
first one is a normalized reduction suggested in [32], which

in our setting can be written as follows

F*(x) — F*(x*)
225 | FF(xt) = Ff(x0)]

where F¥(x) = (1— )t (1§ () ) + e * (£ (). B is
the contribution of the j-th residual to the combined objec-
tive F'¥. We will denote the algorithm using this stopping
criterion by LM-MOO™.

Using the MOO perspective allows us to refine the above
criterion to also detect when the objectives ¥ and W* are
(nearly) conflicting at xg. This is indicated by the vectors
u = VV¥(xp) and v = V¥*(xg) being (approximately)
opposing. The second implementation of TEST-STOPPING
uses a regularized cosine for this additional test,

< €o, ®)

ulv + min{0, min{||ul|, |v]|} — &1}
[ul[[[v] + max{0, 1 — min{][ul],[|v|/}}

€))

to avoid undesired behavior when |lul| =~ 0 or ||v| =~ 0.
This quantity is exactly HuuHTﬁ if |ul| > &1 and || V|| > &1.
If [Jul]| < €7 or ||v|| < &1, then this ratio approaches —1.
The function TEST-STOPPING returns true if this ratio is
less than 1 — ¢4 or Eq. 8 is satisfied (false otherwise). Thus,
this version of TEST-STOPPING is also true if either suffi-
ciently large input vectors are close to opposing directions,
or if one (or both) of the vectors is approximately vanishing
(which indicates that the current solution is almost a station-
ary point of ¥ or ¥*). We denote the induced algorithm by
LM-MOQO. In the numerical experiments we set g = 1/10,
€1 = 1073 and e, = —0.95.

The stopping criterion in line 10 of Alg. 1 is guaranteed
to be eventually satisfied as the algorithm reduces ¥ and
the current W* as long as the gradients of ¥ and U at the
current solution are not opposing. Observe that (1 — p)H +
ufl 4 v1 is strictly positive definite and therefore has full
rank. Thus, v* = 0iff g = —u(1 — u)~'g, but this means
that the current solution X is locally Pareto critical. If g and
g are not opposing, then due to Proposition 2 there exists a
v > 0 such that v* decreases both ¥ and W*.

For robust NLLS objectives U and ¥* analogous to
Eq. 1 the local quadratic models at the current solution xq
are obtained by (i) linearizing the residuals f;(xqg + ) =
f;(x0) + J;0, and (ii) using the IRLS approach to convert
the mappings f + «(||f||) and f — ¥*(||f]|) to quadratic
functions. We implemented Alg. 1 in C++, and the update
step given in line 6 of Alg. 1 is determined by a direct sparse
solver [5] (which dominates the runtime).

6. Results

We run numerical experiments for two sets of problem
instances: first, we evaluate the different methods on bun-
dle adjustment problems. We consider bundle adjustment
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Figure 5: Performance profiles for linearized and metric bundle adjusted computed from 20 bundle adjustment instances.

as one of the main applications of robust cost minimiza-
tion in computer vision. Second, we assess the ability of
the algorithms to avoid poor local minima in the multiple
data-association setting by maximum aposteriori inference
for dense correspondence estimation. In all experiments
we limit the number of iterations (i.e. the number of times
line 6 of Alg. 1 or the respective normal equation is solved)
to 100. Especially bundle adjustment instances will not be
converged in terms of standard stopping criteria after this
number of iterations, but the achieved objectives and solu-
tions are effectively stable. In the experiments the target
kernel is chosen to be the smooth truncated kernel 45T [33],
since it is a close approximation to an “ideal” truncated
quadratic cost. As guidance functions we choose its scaled
versions 15T with 7 = 2% for k = 1,...,4. More results
are provided in the supplementary material.

Bundle adjustment We use the camera parametrization
suggested in [1], and therefore the bundle adjustment ob-
jective is given by

> y(fim (w(RiX; + ) — Pij). (10)

where p;; € R? is the image point associated with the 3D
point X; € R in the i-th image, R; € SO(3) and t; € R3
are the orientation parameters of the i-th camera, 7 : R3 —
R?, 7(X) = X /X3 is the projection function, and f; is the
focal length if camera . 7; is the lens distortion function
with 7,(p) = (1 + kit[[pl|? + ko2lp|*)p. and o is the
smooth truncated kernel.

We use 20 instances from the dataset in conjunction
with [1] (listed in the supplementary material, with the
number of cameras ranging from 73 to 744). We use the
achieved outlier fraction as performance measure (since it
is more meaningful than e.g. objective values). Fig. 5 vi-
sualizes the obtained performance profiles [7] for different
methods applied on linearized and metric bundle adjust-
ment. The graphs have to be read as follows: for a mul-
tiplicative factor 7 > 1, the value p is the fraction of in-
stances such that the performance measure (in our case the
outlier ratio) is less than 7 times of the result achieved by
the best algorithm. At 7 = 1 it reports the relative fre-
quency of an algorithm being the best method. Although

performance profiles are widely used to compare software
for numerical optimization, some care is required when in-
terpreting the resulting graphs [14, 17]. Nevertheless, we
use performance profiles to visualize a summary of the ob-
tained numerical results. According to the profiles illus-
trated in Fig. 5, LM-MOO with either stopping criterion is
highly competitive.

The speed of convergence is illustrated in Fig. 6. It
can be seen in these figures that the proposed MOO-based
method is state-of-the-art in terms of the reached objective,
but also highly competitive in terms of how quickly the tar-
get objective is reduced. We refer to the supplementary ma-
terial for a complete set of convergence graphs.

Dense correspondence We chose dense correspondence
as multiple data association task, since the solution quality
is very easy to assess visually. The underlying objective is
given by

- Czp-,k) + Z Yreg(dp — dg) |

9EN (p)

K
Z A Z wdala(dp
k=1

peEVY

where d, 1, is the position of the k-th local minimum of the
matching cost profile at pixel p (recall Fig. 3). Ygata> Vreg
and A are chosen to yield visually sensible results. Fig. 7
summarize the results for the “teddy” and “cones” pair. In
contrast to Fig. 4 the starting point for all methods is initial-
ized with the more reasonable best-cost solution. Joint HQ
minimization improves the initial solution minimally, and
GOM+ and our proposed method reach similar minima, but
the convergence speed of GOM+ is significantly slower.

7. Conclusion

In this paper we derive a novel NLLS-based robust op-
timization algorithm that both quickly decreases the target
objective and possesses a strong ability to avoid poor local
minima. We identify that the optimistic initialization of the
confidence weights in half-quadratic lifting approaches is
of higher importance to avoid poor local minima than the
joint optimization strategy. This experimental analysis al-
lows us to demonstrate failure cases of joint HQ for diffi-
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Vb
IRLS
— lifted HQ | |
GOM+
LM-MOO
------ LM-MOO* | |

Vb
IRLS
— lifted HQ

GOM+
LM-MOO
------ LM-MOO+

0 2 4 6 8 10 12 14 16 18 20

Seconds

Figure 7:

0 2 4 6 8 10 12 14 16 18 20

Seconds

Top: Initial best-cost depth and solutions of joint HQ, GOM+ and LM-MOO, respectively, for the “teddy” and

“cones” stereo pair. Bottom: best objectives reached vs. runtime for different methods.

cult problems with mutually exclusive residuals. As a con-
sequence, we decide to rely on a smoothing-based scheme
instead of half-quadratic lifting to reach our goal. The ques-
tion at hand therefore is: how can we combine an algorithm
that uses a smoothing mechanism to avoid poor local min-
ima while maintaining an ability to quickly decrease the tar-
get objective? In order to answer that question, we propose
to leverage a multi-objective optimization framework that
allows us to obtain an algorithm matching the two afore-
mentioned properties. We believe that our algorithm will be
useful in many computer vision applications where a trade-
off between computational time and ability to avoid poor
local minima is required.

Future work will address the application of MOO-
inspired methods to other difficult, continuous optimiza-

tion problems. In particular, highly non-linear residuals still
pose an important challenge.
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