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= Convolution + ReLU = Max-Pooling = Convolution + BatchNorm

Fig. 1: S2DNet: Architecture overview. We feed images through a standard VGG-
16 [14] backbone, and set three extraction points to process intermediate features.
These features are sent to small, adaptation layers which help with the convergence
and provide more condensed descriptors.

A Evaluation Details

In this section, we provide additional experiment details that were used to run
our evaluations.

A.1 Cyclic Verification

As said in Section 4.2, we not only filter out correspondences using Eq. (4) (in the
submitted version of the paper) but we also remove correspondences which do not
pass the cyclic check of matching back on their source pixel. This is equivalent to
performing a mutual nearest-neighbor verification as it is done with D2-Net [5]
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ν MMA@1 MMA@2 MMA@3 MMA@10

1.0 0.563 0.747 0.805 0.911
2.0 0.548 0.749 0.814 0.915
5.0 0.537 0.743 0.808 0.916
10.0 0.532 0.738 0.802 0.916

Table 1: Cyclic Verification. We report the MMA on HPatches [2] for several cyclic
distance thresholds ν, using SuperPoint [4] detections and τ = 0.2. We find that
stricter thresholds improve the MMA at 1 pixel, while slightly damaging the coarser
correspondences. In all our localization experiments, we use ν = 1.0

and R2D2 [10]. To perform this verification, we measure the distance between a
source keypoint pnA and its cyclic correspondent after running the sparse-to-dense
matching both ways and remove the correspondence if the following condition is
not satisfied:

dcyclic = ‖pnA − pnA
∗‖2 < ν , (1)

where

pnA
∗ = argmax

p∈Ω
CB→A
pn

B
∗ [p] (2)

and

pnB
∗ = argmax

p∈Ω
CA→B
pn

A
[p] . (3)

In our all experiments, we use a cyclic distance threshold of ν = 1 pixel. In
Table 1, we report the impact of this threshold on the mean matching accuracy.

A.2 Local Features Evaluation

The local features benchmark [13] couples the localization task with a multiview
3D reconstruction task. As discussed in the paper, the nature of sparse-to-dense
matching in S2DNet does not guarantee the uniqueness of detections across
multiple images. Thus, performing 3D reconstruction with S2DNet would result
in a very high number of triangulated landmarks with low track lengths. Therefore,
we perform the preliminary 3D reconstruction step with an off-the-shelf feature
detector in a sparse-to-sparse fashion instead. Since we are dealing with daytime
image pairs which are easier to match, we find that this is sufficient to obtain an
accurate triangulation. We use the SURF [3] detector as we found it provided
the best results. Indeed, SuperPoint [4] detects fewer keypoints which harms the
performance under strong changes of scale. We then relocalize query images using
S2DNet adopting this time a sparse-to-dense approach, and using triangulated
keypoints as source detections.
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A.3 Hierarchical Localization

In the day-night visual localization benchmark [13], we use S2DNet to perform
hierarchical localization. We first perform image retrieval using DenseVLAD [18]
global image descriptors to fetch the top-20 nearest neighbours of both daytime
and nighttime queries. Similar to [11], we compute a covisibility graph on the
retrieved database images to cluster 3D points, leading to a reduced set of places.
For each landmark, we pre-compute sparse descriptors using S2DNet and perform
sparse-to-dense matching on the query image to find its correspondent. The
subsequent 3D-2D correspondences are then fed to a Perspective-n-Point (PnP)
solver [8] inside a RANSAC [6] loop.

We compare our method to several baselines provided by the benchmark
authors. Active Search (AS) [12] and City Scale Localization (CSL) [15] are
both 2D-3D direct matching methods representing the current state-of-the-art in
terms of accuracy. Semantic Match Consistency (SMC) [17] applies a semantic
segmentation-based match rejection to improve the predicted poses. We report
the results of pure image retrieval-based approaches using DenseVLAD [18] and
NetVLAD [1]. For these methods, the query pose is approximated by the pose of
the top-1 retrieved database image.

For hierarchical approaches, S2DHM [7] is the closest to ours. This method
also performs sparse-to-dense matching, but is trained with weak supervision
and computes downsampled correspondence maps. One main advantage of this
method is that it is pre-trained on RobotCar daytime and nighttime images for
the task of image retrieval. These training images are separate from the reference
and evaluation set but still very similar visually to RobotCar evaluation images.
We report the results of HF-Net [11], which performs hierarchical localization with
NetVLAD and SuperPoint [4]. Lastly, we report the performance of D2-Net [5]
provided by the authors.

A.4 InLoc evaluation

Since S2DNet was trained on outdoor images, we found that the confidence scores
are overall lower when applied indoors, and confidence thresholdings τ > 0 result
in very few correspondences and damages the overall localization results. Thus,
for the InLoc experiments, we use τ = 0. InLoc query images are also of very high
resolution (3024× 4032 pixels). To speed up the matching process, we downscale
all images to a maximum width or length of 1200 pixels.

B Qualitative Results

We report in Figure 2 example correspondence maps for InLoc [16] and RobotCar
nighttime query images. We show the intermediate correspondence maps, as
well as the final aggregated map and the retrieved correspondent. We report in
Figure 3 inliers for the Sparse PE pipeline of InLoc [16], and show in Figure 4
two failure cases.
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(a) (c) (b) (f) (d) (e) 

Fig. 2: Correspondence maps examples. From left to right: Reference image with a
keypoint detection (a), intermediate correspondence maps predicted by S2DNet (b, c, d),
aggregated pre-softmax correspondence map (e) and retrieved correspondent in the
query image (f). The top three images are from InLoc [16] and the bottom three from
RobotCar Seasons [9].
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Fig. 3: Inlier Correspondences on InLoc [16]. Despite strong changes in scale,
illumination and the large scale of the database, S2DNet manages to build robust and
accurate correspondences.

Fig. 4: Failure Cases Examples on InLoc [16]. Due to the repetitive structures
present in the dataset, we find failure cases where such structures are matched despite
being from two different places. In InLoc however, such cases are typically discarded
when performing the dense pose verification (Dense PV) step.
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