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Abstract. Establishing robust and accurate correspondences is a fun-
damental backbone to many computer vision algorithms. While recent
learning-based feature matching methods have shown promising results in
providing robust correspondences under challenging conditions, they are
often limited in terms of precision. In this paper, we introduce S2DNet,
a novel feature matching pipeline, designed and trained to efficiently
establish both robust and accurate correspondences. By leveraging a
sparse-to-dense matching paradigm, we cast the correspondence learning
problem as a supervised classification task to learn to output highly
peaked correspondence maps. We show that S2DNet achieves state-of-the-
art results on the HPatches benchmark, as well as on several long-term
visual localization datasets.
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1 Introduction

Establishing both accurate and robust correspondences across images is an
underpinning step to many computer vision algorithms, such as Structure-from-
Motion (SfM) [21,48,49,55], visual tracking [23,64] and visual localization [45,53,
54]. Yet, obtaining such correspondences in long-term scenarios where extreme
visual changes can appear remains an unsolved problem, as shown by recent
benchmarks [44, 56]. In particular, illumination (e.g. daytime to nighttime),
cross-seasonal and structural changes are very challenging factors for feature
matching.

The accuracy of the correspondences plays a major role in the performance
of the aforementioned algorithms. Indeed, the noise perturbation experiment of
Figure 1 (left) shows the highly damaging impacts of errors of a few pixels on visual
localization. A traditional and very commonly used paradigm for feature matching
between two images consists in detecting a set of keypoints [7,13,15,20,27,29,30,
37,47,65], followed by a description stage [6,9,13–15,27,33,34,37,50,51,65] in
each image. Sparse sets of keypoints and their descriptors are then matched using
for instance approximate nearest neighbours. This sparse-to-sparse matching
approach has the main advantage of being both computationally and memory
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efficient. For long-term scenarios, this requires detecting repeatable keypoints
and computing robust descriptors, which is very challenging.
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Fig. 1: Learning accurate correspondences. On the left, we report the impact of
adding a gaussian noise of increasing variance on ground-truth 2D-3D correspondences
for the task of visual localization, on Aachen Day-Night [44,46] images. This experiment
highlights the importance of having very accurate correspondences, as offsets of a few
pixels can lead to localization errors of several meters. Yet as shown on the right,
sparse-to-sparse methods fail to make such accurate predictions. We show in (a) and
(b) local regions of interest for a day-night image pair. In (c) [top], we display the
keypoint detections being the nearest to the center of the patch in the daytime image
for each detector; [bottom] we show the closest correspondent detected keypoints for
each detector in the nighttime image. In (d), we show the correspondent image locations
found by S2DNet in the nighttime image for daytime keypoint detections. S2DNet
manages to find much more accurate correspondences than sparse-to-sparse methods.

With the advent of convolutional neural networks (CNNs), learning-based
sparse-to-sparse matching methods have emerged, attempting to improve robust-
ness of both detection and description stages in an end-to-end fashion. Several
single-CNN pipelines [13,15,37] were trained with pixel-level supervision to jointly
detect and describe interest points. These methods have yielded very competitive
results especially in terms of number of correct matches, but fail to deliver highly
accurate correspondences [15,37]. Indeed detecting the same keypoints repeatably
across images is very challenging under strong visual changes, as illustrated in
Figure 1 (right). Thus, the accuracy of such methods becomes highly reliant on
the feature detector’s precision and repeatability.

A recently proposed alternative [18] to solve the repeatable keypoint detection
issue is to shift the sparse-to-sparse paradigm into a sparse-to-dense approach:
Instead of trying to detect consistent interest points across images, feature detec-
tion is performed asymmetrically and correspondences are searched exhaustively
in the other image. That way, all the information in the challenging image is
preserved, allowing each pixel to be a potential correspondent candidate. Thanks
to the popularization and development of GPUs, this exhaustive search can be
done with a small computational overhead compared to other learning-based
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Fig. 2: S2DNet feature matching pipeline overview. Given an image and a set
of detections coming from an off-the-shelf keypoint detector (a), we first extract a set
of sparse multi-level descriptors with S2DNet. We then compute dense feature maps
for a covisible image (b), and compute multi-level correspondence maps (c), which we
aggregate using bilinear upsampling and addition. Correspondences can the be retrieved
using a simple argmax operator. We explicitly train S2DNet to generate accurate and
discriminative correspondence maps using a supervised classification approach (d).

methods. This approach has showed to give competitive results [18] when trained
in a weakly supervised fashion for the task of image retrieval.

In this paper, we reuse the sparse-to-dense idea while also addressing the accu-
racy issue. We introduce a novel feature matching pipeline which we name S2DNet.

Contributions : (i) We propose to cast the feature learning problem as a classifica-
tion one in a sparse-to-dense paradigm. This is in contrast with State-of-the-art
(SoA) algorithms (e.g. D2-Net, R2D2) which learn features using metric learning
(with contrastive losses) and a sparse-to-sparse paradigm. We show that our
approach delivers significant improvements on both image matching and visual
localization popular benchmarks. (ii) Even when used in a classical sparse-to-
sparse framework, the image features learned by S2DNet lead to much more
accurate correspondences than SoA features.(iii) Our formalism also enables
probabilistic interpretation, which allows us to perform outlier rejection through
confidence thresholding. As demonstrated by our experiments, this significantly
improves the performance. (iv) Rather than aiming to jointly learn a feature
detector and a feature descriptor like SoA approaches, we show we can keep using
classical keypoint detectors and rather focus on the feature learning problem.
This leads to a single loss, while previous methods have to combine multiple loss
terms. Moreover, we can also operate at single-scale. Our approach thus yields a
fundamental simpler approach, in addition to improving performance.
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2 Related Work

Establishing 2D to 2D correspondences between images is a key step for many
applications in computer vision, whose performance often directly relies on the
quantity and accuracy of such correspondences [17, 62]. We can distinguish three
categories for obtaining such correspondences, which either rely on a bilateral,
no keypoint or asymmetrical detection stage.

Sparse-to-sparse feature matching. The most popular and studied approach
for feature matching is a two-stage pipeline that first detects interest point
locations and assigns a patch-based descriptor to each of them. Detection is
applied on both images to be matched, and we refer to these detect-then-describe
approaches as sparse-to-sparse feature matching methods. To perform keypoint
detection, a variety of both hand-crafted [7, 20, 27, 29] and learning-based [34, 65]
detectors have been developed, each aiming to detect accurate keypoints in
both a repeatable as well as illumination, scale and affine invariant fashion. For
feature description, methods using histograms of local gradients [7, 10,27,39] or
learning-based patch description [4, 11,34,58,59,65] have been widely used.

Yet, when working on long-term scenarios where very strong visual changes
can appear, such methods fail to give reliable correspondences [44], motivating
the need for data-driven methods leveraging information beyond patch-level.
Among them, end-to-end learning-based pipelines such as LIFT [65] propose
to jointly learn the detection and description stages. Methods like LF-Net [34]
or SuperPoint [13] learn detection and description in a self-supervised way,
using spatial augmentation of images through affine transformations. With D2-
Net [15], Dusmanu et al. showed that a single-branch CNN could both perform
detection and description, in a paradigm referred to as detect-and-describe. Their
network is trained in a supervised way with a contrastive loss on the deep local
features, using ground-truth pixel-level correspondences provided by Structure-
from-Motion reconstructions [26]. R2D2 [37] builds on the same paradigm and
formulates the learning of keypoint reliability and repeatability together with
the detection and description, using this time a listwise ranking loss.

In order to preserve the accuracy of their correspondences, both D2-Net [15]
and R2D2 [37] use dilated convolutions. Still when looking at feature-matching
benchmarks like HPatches [5], the mean matching accuracy at error thresholds of
one or two pixels is quite low. This indicates that their detection stage is often off
by a couple of pixels. As shown in Figure 1, these errors have direct repercussions
on the subsequent localization or reconstruction algorithms.

Dense-to-dense feature matching. Dense-to-dense matching approaches get
rid of the detection stage altogether by finding mutual nearest neighbors in
dense feature maps. This can be done using densely extracted features from a
pre-trained CNN, combined with guided matching from late layers to earlier
ones [56]. NCNet [38] trains a CNN to search in the 4D space of all possible
correspondences, with the use of 4D convolutions. While they can be trained
with weak supervision, dense-to-dense approaches carry high computational cost
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and memory consumption which make them hardly scalable for computer vision
applications. Besides, the quadratic complexity of this approach limits the reso-
lution of the images being used, resulting in correspondences with low accuracy.

Sparse-to-dense feature matching. Very recently [18] proposed to perform
the detection stage asymmetrically. In such setting, correspondences are searched
exhaustively in the counterpart image, by running for instance a cross-correlation
operation on dense feature maps with a sparse set of local hypercolumn descriptors.
While this exhaustive search used to be a costly operation, it can now be efficiently
computed on GPUs, using batched 1× 1 convolutions. The main appeal for this
approach is that under strong visual changes, the need for repeatability in keypoint
detection is alleviated, allowing each pixel to be a detection. Instead, finding
corresponding keypoint locations is left to the dense descriptor map. Preliminary
work on sparse-to-dense matching [18] has shown that reusing intermediate CNN
representations trained with weak supervision for the task of image retrieval can
lead to significant gains in performance for visual localization. However, these
features are not explicitly learned for feature matching, and thus fail to give
pixel-accurate correspondences. We will refer to this method as S2DHM, for
Sparse-to-Dense Hypercolumn Matching, in the rest of the paper.

In this paper, we propose to explicitly learn correspondence maps for the task
of pixel-level matching.

3 Method

In this section we introduce and describe our novel sparse-to-dense feature-
matching pipeline, which we call S2DNet.

3.1 The Sparse-to-Dense paradigm

Given an image pair (IA, IB), our goal is to obtain a set of 2D correspondences
which we write as {(pnA,pnB)}Nn=1. Let us consider the case where a feature detector
(e.g. the SuperPoint detector [13]) has been applied on image A, producing a
set of N keypoints {pnA}Nn=1. In this case, the feature matching problem reduces
to a sparse-to-dense matching problem of finding a correspondent pnB in image B
for each detection pnA. We propose to cast this correspondence learning problem
as a supervised classification task by restricting the set of admissible locations to
the pixel coordinates of IB. This leads to the following categorical distribution:

p (pnB|pnA, IA, IB, Θ) =
exp (Cn[pnB])∑
q∈Ω exp (Cn[q])

, (1)

where Cn is a correspondence map of the size of IB produced by our novel S2DNet
matching pipeline and Ω is the set of pixel locations of IB. S2DNet takes as
input pnA, IA, IB and its parameters Θ. Equation 1 describes the likeliness of a
pixel pnA in IA to correspond to pixel pnB in IB.



6 H. Germain et al.

3.2 S2DNet matching pipeline

We introduce S2DNet, a pipeline built specifically to perform sparse-to-dense
matching which we illustrate in Figure 2. Given a pair of images (IA, IB), we
apply a convolutional backbone F on both images using shared network weights
i.e. {HmA }Mm=1 = F (IA;Θ) and {HmB }Mm=1 = F (IB;Θ), where {HmA }Mm=1 and
{HmB }Mm=1 correspond to intermediate feature maps extracted at multiple levels.
Θ denotes the parameters of F . Such representations are sometimes referred
to as hypercolumns [19, 42]. While the earlier layers encode little semantic
meaning, they preserve high-frequency local details which is crucial for retrieving
accurate keypoints. Conversely in the presence of max-pooling, later layers loose
in resolution but benefit from a wider receptive field and thus context.

For each detected keypoint pnA in IA, we extract a set of sparse descriptors in
the dense intermediate feature maps HmA and compute the dense correspondence
map Cn against HmB , by processing each level independently, in the following way:

Cn =

M∑
m=1

U (HmA [pn,mA ] ∗ HmB ) , (2)

where U refers to the bilinear upsampling operator to IB resolution, pn,mA corre-
sponds to downscaling the 2D coordinates pnA to the resolution of HmA , and ∗ is
the 1× 1 convolution operator.

3.3 Training-time

While state of the art approaches employ either a local contrastive or a listwise
ranking loss [15,34,37] to train their network, we directly optimize for the task of
sparse-to-dense correspondence retrieval by maximizing the log-likelihood in eq.(1)
which results in a single multi-class cross-entropy loss. From a practical point of
view, for every training sample, this corresponds to computing the softmax of the
correspondence map and evaluate the cross-entropy loss using the ground truth
correspondence pnB. This strongly penalizes wrong predictions, regardless of their
closeness to the ground-truth, forces the network to generate highly localized
and peaked predictions and helps computing accurate correspondences.

3.4 Test-time

At test-time, to retrieve the correspondences in IB, we proceed as follows for
each detected keypoint pnA:

pnB
∗ = argmax

pn
B

p (pnB|pnA, IA, IB, Θ) = argmax
p

Cn [p] , (3)

where Cn = S2DNet(pnA, IA, IB;Θ). By default, S2DNet does not apply any type
of filtering and delivers one correspondence for each detected keypoint in the
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source image. Since we do not explicitly deal with co-visibility issues, we filter
out some ambiguous matches if the following condition is not satisfied:

p (pnB
∗|pnA, IA, IB, Θ) > τ , (4)

where τ is a threshold between 0 and 1.

3.5 S2DNet architecture

As [15,18], we use a VGG-16 [52] architecture as our convolutional backbone. We
place our intermediate extraction points at three levels, in conv 1 2, conv 3 3

and conv 5 3, after the ReLU activations. Note that conv 1 2 comes before
any spatial pooling layer, and thus preserves the full image resolution. To both
help with the convergence and reduce the final descriptors sizes, we feed these
intermediate tensors to adaptation layers. They consist of two convolutional
layers and a final batch-normalization [22] activation, with an output size of 128
channels. An illustration of our architecture can be seen in the supplementary
material.

3.6 Differences with Sparse-to-Dense Hypercolumn Matching [18]

Sparse-to-Dense Hypercolumn Matching (S2DHM) [18] described a weakly su-
pervised approach to learn hypercolumn descriptors and efficiently obtain cor-
respondences using the sparse-to-dense paradigm. In this paper, we propose a
supervised alternative which aims at directly learning accurate correspondence
maps. As we will show in our experiments, this leads to significantly superior re-
sults. Moreover, in its pipeline S2DHM upsamples and concatenates intermediate
feature maps before computing correspondence maps. In comparison, S2DNet
computes correspondence maps at multiple levels before merging the results by
addition. We will later show that the latter approach is much more memory and
computationally efficient.

4 Experiments

In this section, we evaluate S2DNet on several challenging benchmarks. We
first evaluate our approach on a commonly used image matching benchmark,
which displays changes in both viewpoint and illumination. We then evaluate
the performance of S2DNet on long-term visual localization tasks, which display
even more severe visual changes.

4.1 Training data

We use the same training data as D2-Net [15] to train S2DNet, which comes from
the MegaDepth dataset [26]. This dataset consists of 196 outdoor scenes and
1, 070, 568 images, for which SfM was run with COLMAP [48,49] to generate a
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sparse 3D reconstruction. A depth-check is run using the provided depth maps
to remove occluded pixels. As D2-Net, we remove scenes which overlap with
the PhotoTourism [1, 57] test set. Compared to D2-Net and to provide strong
scale changes, we train S2DNet on image pairs with an arbitrary overlap. At
each training iteration, we extract random crops of size 512× 512, and randomly
sample a maximum of 128 pixel correspondences. We train S2DNet for 30 epochs
using Adam [24]. We use an initial learning rate of 10−3 and apply a multiplicative
decaying factor of e−0.1 at every epoch.

4.2 Image Matching

We first evaluate our method on the popular image matching benchmark HPat-
ches [5]. We use the same 108 sequences of images as D2-Net [15], each sequence
consisting of 6 images. These images either display changes in illumination (for
52 sequences) or changes in viewpoint (for 56 sequences). We consider the first
frame of each sequence to be the reference image to be matched against every
other, resulting in 540 pairs of images to match.

Evaluation protocol. We apply the SuperPoint [13] keypoint detector on the
first image of each sequence. For each subsequent pair of images, we perform
sparse-to-dense matching using S2DNet (see section 3.4). Additionally, we filter
out correspondences which do not pass the cyclic check of matching back on
their source pixel, which is equivalent to performing a mutual nearest-neighbor
verification as it is done with D2-Net [15] and R2D2 [37].

We compute the number of matches which fall under multiple reprojection
error thresholds using the ground-truth homographies provided by the dataset,
and report the Mean Matching Accuracy (or MMA) in Figure 3.

We compare S2DNet to multiple sparse-to-sparse matching baselines. We
report the performance of RootSIFT [3,35] with a Hessian Affine detector [29]
(Hes.det. + RootSIFT), HardNet++ [31] coupled with HesAffNet regions [32]
(HAN + HN++), DELF [33], LF-Net [34], SuperPoint [13], D2-Net [15] and
R2D2 [37]. We also include results from the sparse-to-dense method S2DHM [18].

Results. We find that the best results were achieved when combining Super-
Point [13] with a threshold of τ = 0.20 (see Equation 4), which are the results
reported in Figure 3. We experimentally found that above this threshold, some
sequences obtain very few to no correspondence at all, which biases the results.
We show that overall our method outperforms every baselines at any reprojection
threshold. The gain in performance is particularly noticeable at thresholds of 1
and 2 pixels, indicating the correspondences we predict tend to be much more
accurate. DELF [33] achieves competitive results under changes in illumination,
which can be explained by the fact that keypoints are sampled on a fixed grid
and that the images undergo no changes in viewpoint. On the other hand, it
performs poorly under viewpoint changes.
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Method #Features #Matches

Hes.det.+RootSIFT [29,35] 6.7K 2.8K

HAN+HN++ [31,32] 3.9K 2.0K

LF-Net [34] 0.5K 0.2K

SuperPoint [13] 1.7K 0.9K

DELF [33] 4.6K 1.9K

S2DHM [18] 0.9K 0.4K

D2-Net [15] 8.3K 2.8K

R2D2 [37] 5.0K 1.8K

S2DNet (ours) 2.0K 0.8K

Fig. 3: HPatches Mean Matching Accuracy (MMA) comparison. We report
in this table the best results for S2DNet, obtained when combined with SuperPoint
detections. S2DNet outperforms all other baselines, especially at thresholds of one or
two pixels. This study highlights the power of working in a sparse-to-dense setting,
where every pixel in the target image becomes a candidate keypoint.

Keypoint detector influence. We run an ablation study to evaluate the impact
of different feature detectors, confidence thresholds as well as using a sparse-to-
sparse approach, and report the results in Table 1 (left). We find that S2DNet
tends to work best when combined with SuperPoint [13]. We also experimentally
find τ = 0.2 to be a good compromise of correspondence rejection while also
maintaining a high number of matches.

Sparse-to-sparse vs. Sparse-to-dense. We find that using S2DNet in a sparse-
to-sparse setting (i.e. applying a detector on the image undergoing illumination or
viewpoint changes) damages the results (see Table 1, left). This phenomenon trans-
lates the errors made by keypoint detectors, and motivates the sparse-to-dense
setting. S2DNet efficiently leverages this paradigm and can find corresponding
keypoints that would not have been detected otherwise. Conversely, we study
the impact of using sparse-to-sparse learning-based methods D2-Net [15] and
R2D2 [37] in a sparse-to-dense setting (see Table 1, right). In this setting, we
define S2DNet sparse descriptors as the concatenated multi-scale feature vectors
at the corresponding pixel locations. We find that using the sparse-to-dense
paradigm systematically improves their performance under illumination changes,
where images are aligned. This suggests that their descriptor maps are robust to
illumination perturbations. On the other hand, performance is damaged for both
methods under viewpoint changes, suggesting that their descriptor maps are not
highly localized and discriminative. Concerning S2DHM, which was trained in a
weakly supervised manner, running it in a sparse-to-sparse setting improves the
accuracy. This highlights the importance of our main contribution, i.e. casting
the sparse-to-dense matching problem as a supervised classification task.

4.3 Long-Term Visual Localization

We showed that S2DNet provides correspondences which are overall more accu-
rate than other baselines. We will now study its impact for the task of visual
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Detector Matching τ MMA@1 MMA@2 MMA@3 MMA@10

S2D 0.20 0.511 0.733 0.805 0.888
Harris [20] S2D 0.0 0.441 0.626 0.690 0.787

S2S - 0.278 0.464 0.565 0.763

S2D 0.20 0.511 0.742 0.823 0.902
SURF [7] S2D 0.0 0.436 0.639 0.718 0.828

S2S - 0.302 0.506 0.619 0.829

S2D 0.20 0.487 0.700 0.771 0.851
SIFT [27] S2D 0.0 0.441 0.626 0.690 0.787

S2D - 0.386 0.559 0.642 0.818

S2D 0.20 0.563 0.747 0.815 0.895
SuperPoint [13] S2D 0.0 0.469 0.623 0.686 0.788

S2S - 0.373 0.599 0.709 0.847

S2D 0.20 0.467 0.716 0.805 0.911
D2-Net [15] S2D 0.0 0.330 0.522 0.604 0.764

S2S - 0.118 0.285 0.425 0.777

S2D 0.20 0.478 0.715 0.799 0.901
R2D2 [37] S2D 0.0 0.341 0.522 0.598 0.746

S2S - 0.316 0.546 0.652 0.819

(a) S2S vs. S2D - S2DNet descriptors

1 2 3 4 5 6 7 8 9 100.0

0.2

0.4

0.6

0.8

1.0

M
M

A

Overall

1 2 3 4 5 6 7 8 9 10
threshold [px]
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1 2 3 4 5 6 7 8 9 10
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D2-Net (S2S) [15] R2D2 (S2S) [37]

D2-Net (S2D) [15] R2D2 (S2D) [37]

SP + S2DHM [13,18] (S2S) SP [13] + S2DNet (S2S)

SP + S2DHM [13,18] (S2D) SP [13] + S2DNet (S2D)

(b) S2S vs. S2D - Other descriptors

Table 1: Ablation study on HPatches. In (a), we evaluate the performance of
several detectors in both a sparse-to-dense (S2S) and sparse-to-sparse (S2S) setting
using S2DNet descriptors. We find that S2DNet works best in the S2D setting, coupled
with SuperPoint (SP) [13] detections, and a confidence threshold of τ = 0.20. In (b), we
study the impact of using sparse-to-sparse learning-based methods in a sparse-to-dense
setting. Results lead to the conclusion that D2-Net [15] and R2D2 [37] descriptor maps
are robust to illumination changes but not highly discriminative locally.

localization under challenging conditions. We report visual localization results
under day-night changes and complex indoor scenes.

Datasets. We evaluate our approach on two challenging outdoor localization
datasets which feature day-to-night changes, and one indoor dataset. The first
dataset is Aachen Day-Night [44, 46]. It features 4,328 daytime reference images
taken with a handheld smartphone, for which ground truth camera poses are
provided. The dataset also provides a 3D reconstruction of the scene [44], built
using SIFT [27] features and SfM. The evaluation is done on 824 daytime and 98
nighttime images taken in the same environment. The second dataset is RobotCar
Seasons [28]. It features 6,954 daytime reference images taken with a rear-facing
camera mounted on a car driving through Oxford. Similarly, ground truth camera
poses and a sparse 3D model of the world is provided [44] and we localize 3,978
images captured throughout a year. These images do not only exhibit nighttime
conditions, but also cross-seasonal evolutions such as snow or rain. Lastly, we
evaluate our pipeline on the challenging InLoc [56,63] dataset. This indoor dataset
is difficult because of its large scale, illumination and long-term changes as well
as the presence of repetitive patterns such as corridors (see Figure 4). It contains
9, 972 database and 356 high-resolution query images, as well as dense depth
maps which can be used to perform dense pose verification. We report for each
datasets the pose recall at three position and orientation thresholds for daytime
and nighttime query images, as per [44].
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InLoc(fixed pipeline)

Method Threshold Accuracy

0.25m / 2◦ 0.5m / 5◦ 5m / 10◦

Direct PE - Aff. RootSIFT [29,35] 18.5 26.4 30.4

Direct PE - D2-Net [15] 27.7 40.4 48.6

Direct PE - S2DNet (ours) 29.3 40.9 48.5

Sparse PE - Aff. RootSIFT [29,35] 21.3 32.2 44.1

Sparse PE - D2-Net [15] 35.0 48.6 62.6

Sparse PE - S2DNet (ours) 35.9 49.0 63.1

Sparse PE + Dense PV - Aff. RootSIFT [29,35] 29.5 42.6 54.5

Sparse PE + Dense PV - D2-Net [15] 38.0 56.5 65.4

Sparse PE + Dense PV - S2DNet (ours) 39.4 53.5 67.2

Dense PE + Dense PV - InLoc [56] 38.9 56.5 69.9

Aachen Day-Night
(fixed pipeline)

Method Threshold Accuracy

0.25m
2◦

0.5m
5◦

5m
10◦

RootSIFT [35] 3.7 52.0 65.3

HAN+HN [32] 37.8 54.1 75.5

SuperPoint [13] 42.8 57.1 75.5

DELF [33] 39.8 61.2 85.7

D2-Net [15] 44.9 66.3 88.8

R2D2 [37]* 45.9 66.3 88.8

S2DNet (ours) 45.9 68.4 88.8

Table 2: InLoc [56] (left) and Local Features Benchmark [44] (right) results.
We report localization recalls in percent, for three translation and orientation thresholds.
On InLoc, S2DNet outperforms both baselines at the finest threshold for the sparse
categories. We also include Dense PE baseline results for reference. R2D2 authors did
not provide results on this benchmark. On the local features benchmark (a pre-defined
localization pipeline), S2DNet achieves state-of-the-art results at the medium precision
threshold. Due to the relatively small number of query images however, recent methods
like D2-Net and R2D2 are saturating around the same performance. *Note that R2D2
was trained on Aachen database images.

Indoor Localization. The InLoc [56] localization benchmark comes with a
pre-defined code base and several pipelines for localization. The first one is called
Direct Pose Estimation (Direct PE) and performs hierarchical localization using
the set of top-ranked database images obtained using image retrieval, followed by
P3P-LO-RANSAC [16,25]. The second variant applies an intermediate spatial
verification step [36] to reject outliers, referred to as (Sparse PE). On top of this
second variant, Dense Pose Verification (Dense PV) can be applied to re-rank
pose candidates by using densely extracted RootSIFT [35] features. In each
variant, we use S2DNet to generate 2D-2D correspondences between queries
and database images, which are then converted to 2D-3D correspondences using
the provided dense depth maps. We use a SuperPoint [13] detector and mutual
nearest-neighbour filtering.

InLoc localization results are reported in Table 2. We compare our approach
to the original InLoc baseline which uses affine covariant [29] detections and
RootSIFT [35] descriptors, as well as results provided by D2-Net [15]. We find
that S2DNet outperforms both sparse baselines at the finest threshold, and is
on par with other methods at the medium and coarse thresholds. In the sparse
setting, best results are achieved when combined with geometrical and dense
pose verification (Sparse PE + Dense PV). In addition we include localization
results that were computed by the benchmark authors using dense-to-dense
feature matching (Dense PE). Due to the nature of our pipeline and the very
high memory and computational consumption of this variant, we choose to limit
our study to sparse correspondence methods. It is interesting to note however
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RobotCar Seasons Aachen Day-Night

Day-All Night-All Day Night

Method Threshold Accuracy Threshold Accuracy Threshold Accuracy Threshold Accuracy

0.25m
2◦

0.5m
5◦

5m
10◦

0.25m
2◦

0.5m
5◦

5m
10◦

0.25m
2◦

0.5m
5◦

5m
10◦

0.25m
2◦

0.5m
5◦

5m
10◦

S
tr
u
c
tu

re
-b

a
se
d CSL [53] 45.3 73.5 90.1 0.6 2.6 7.2 52.3 80.0 94.3 24.5 33.7 49.0

AS [43] 35.6 67.9 90.4 0.9 2.1 4.3 57.3 83.7 96.6 19.4 30.6 43.9

SMC [60] * 50.3 79.3 95.2 7.1 22.4 45.3 - - - - - -

R
e
tr
ie
v
a
l

-b
a
se
d FAB-MAP [12] 2.7 11.8 37.3 0.0 0.0 0.0 0.0 0.0 4.6 0.0 0.0 0.0

NetVLAD [2] 6.4 26.3 90.9 0.3 2.3 15.9 0.0 0.2 18.9 0.0 2.0 12.2

DenseVLAD [61] 7.6 31.2 91.2 1.0 4.4 22.7 0.0 0.1 22.8 0.0 2.0 14.3

H
ie
ra

r
-c
h
ic
a
l

HF-Net [40] 53.0 79.3 95.0 5.9 17.1 29.4 79.9 88.0 93.4 40.8 56.1 74.5

S2DHM [18] * 45.7 78.0 95.1 22.3 61.8 94.5 56.3 72.9 90.9 30.6 56.1 78.6

D2-Net [15] 54.5 80.0 95.3 20.4 40.1 55.0 84.8 92.6 97.5 43.9 66.3 85.7

S2DNet (ours) 53.9 80.6 95.8 14.5 40.2 69.7 84.3 90.9 95.9 46.9 69.4 86.7

Table 3: Localization results. We report localization recalls in percent, for three
translation and orientation thresholds (high, medium, and coarse) as in [44]. We put in
bold the best and underline the second-best performances for each threshold. S2DNet
outperforms every baseline in nighttime conditions, except at the finest threshold of
RobotCar Seasons. This can be explained by the extreme visual changes and blurriness
that these images undergo. At daytime, S2DNet performance is on par with D2-
Net [15]. *Note that S2DHM [18] was trained directly on RobotCar sequences, which
explains the high nighttime performance. SMC [60] also uses additional semantic data
and assumptions. R2D2 [37] authors did not provide localization results on these
benchmarks.

that S2DNet outperforms the original (Dense PE + Dense PV) InLoc baseline at
the finest precision threshold, using a much lighter computation.

Day-Night Localization. We report day-night localization results with S2DNet
using two localization protocols. Localization results reported in Table 2 show
that S2DNet achieves state-of-the-art results, outperforming all other methods at
the medium precision threshold. It is important to note that R2D2 was finetuned
on Aachen database images.

We then report in Table 3 localization results using a hierarchical approach,
similar to [18, 40, 44]. Contrary to Table 2, these results do not allow to compare
the keypoint matching approaches alone since localization pipelines are different.
Even the comparison with D2Net is difficult to interpret since their full localiza-
tion pipeline was not released. Still, S2DNet achieves state-of-the-art results in
Aachen nighttime images, and outperforms all baselines that were not trained
on RobotCar nighttime images at medium and coarse precision thresholds. At
daytime, where detecting repeatable and accurate keypoints is easier, S2DNet
is on par with other learning-based methods. At the finest nighttime RobotCar
threshold it is likely that S2DNet features struggle to compute accurate corre-
spondences, which can be explained by the extreme visual changes these images
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Method
Network

Backbone
Descriptor

Size
Forward

pass on Iq

Detection
step on Iq

Matching
per keypoint

Total online
computational time

tA tB tC tA + tB +N ×K × tC

N = 1
K = 1000

N = 5
K = 1000

N = 15
K = 1000

D2-Net [15] VGG-16 512 17.8ms 5.474s 0.4µs 5.492s 5.494s 5.498s
R2D2 [37] L2-Net 128 19.1ms 479.6ms 0.2µs 0.499s 0.499s 0.501s

S2DHM [18] VGG-16 2048 326ms - 0.33ms 0.656s 1.976s 5.276s

S2DNet VGG-16 + adap. 3 × 128 28.2ms - 0.31ms 0.338s 1.578s 4.678s

Table 4: Computational Time Study for visual localization. We compare the
time performance of our method against other learning-based approaches in a visual
localization scenario. For a given query image Iq and N reference images of size
1200 × 1600 with K detections each, we report the average measured time to perform
image matching against each of them. In this standard setting, keypoint locations and
descriptors have already been extracted offline from the reference images.

undergo (see Figure 4). Overall, this study shows that S2DNet achieves better
performance in particularly challenging conditions such as nighttime, compared
to other sparse-to-sparse alternatives.

5 Discussion

Runtime performance. To compare S2DNet against state-of-the-art approaches,
we time its performance for the scenario of visual localization. We run our experi-
ments on a machine equipped with an Intel(R) Xeon(R) E5-2630 CPU at 2.20GHz,
and an NVIDIA GeForce GTX 1080Ti GPU. We report the results in Table 4. In a
localization setting, we consider the keypoint detection and description step to be
pre-computed offline for reference images. Thus for an incoming query image, only
sparse-to-sparse methods need to perform the keypoint detection and descriptor
extraction step. We find this very step to be the bottleneck of learning-based
methods like D2-Net [15] or R2D2 [37]. Indeed, these methods are slowed down by
the non-maxima suppression operations, which are in addition run on images of
multiple scales. For S2DHM [18] and S2DNet, no keypoint detection is performed
on the incoming query image and most of the computation lies in the keypoint
matching step. As expected however, the matching step is much more costly for
these sparse-to-dense methods. Still, for 1000 detections and 1 retrieved image,
S2DNet is the fastest method while for15 retrieved image, it is on par with D2-Net.

Current limitations of the sparse-to-dense paradigm. One limitation of
our current sparse-to-dense matching formulation appears for the task of multi-
view 3D reconstruction. Indeed, the standard approach to obtain features tracks
consists in 1) detecting and describing keypoints in each image, 2) matching pairs
of images using the previously extracted keypoints descriptors and 3) creating
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Fig. 4: Correspondence maps examples. From left to right: Reference image with a
keypoint detection (a), intermediate correspondence maps predicted by S2DNet (b, c, d),
aggregated pre-softmax correspondence map (e) and retrieved correspondent in the
query image (f). From top to bottom: images from InLoc [56], Aachen Day-Night [46]
and RobotCar Seasons [28].

tracks from these matches. In our S2D matching paradigm, every pixel becomes a
detection candidate which is not compatible with the standard 3D reconstruction
pipeline previously described. This limitation opens novel directions of research
for rethinking the standard tracks creation pipeline and enabling the use of S2D
matching in 3D reconstruction frameworks.

Compatibility with learning-based matchers. Learning-based matching
methods like NG-RANSAC [8], OANet [66] or SuperGlue [41] process putative
correspondences to return inlier confidence scores. These methods could easily be
work as a post-processing step of S2DNet, to further improve matching results.

6 Conclusion

In this paper we presented S2DNet, a new sparse-to-dense learning-based keypoint
matching architecture. In contrast to other sparse-to-sparse methods we showed
that this novel pipeline achieves superior performance in terms of accuracy, which
helps improve subsequent long-term visual localization tasks. Under visually
challenging conditions, S2DNet reaches state-of-the-art performance for image
matching and localization, and advocates for the development of sparse-to-dense
methods.

Acknowledgement. This project has received funding from the Bosch Research
Foundation (Bosch Forschungsstiftung).
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