Online Variational Bayesian Motion Averaging

Guillaume Bourmaud

Toshiba Research Europe

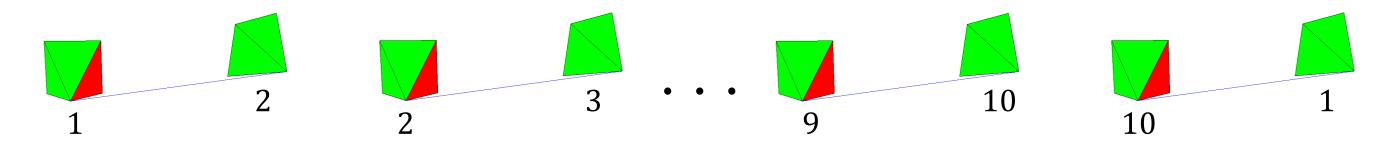
Introduction

Motion averaging (aka pose-graph inference for G = SE(3))

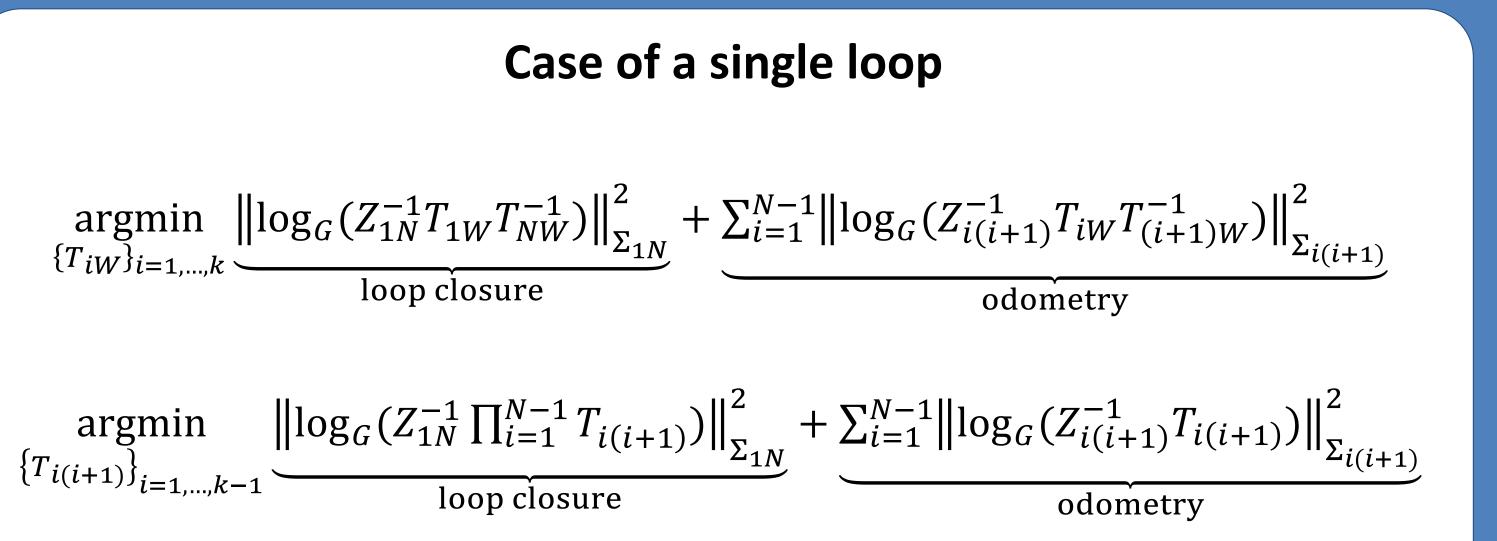
Given noisy relative transformations $\{Z_{mn} \in G\}_{1 \le m < n \le N}$

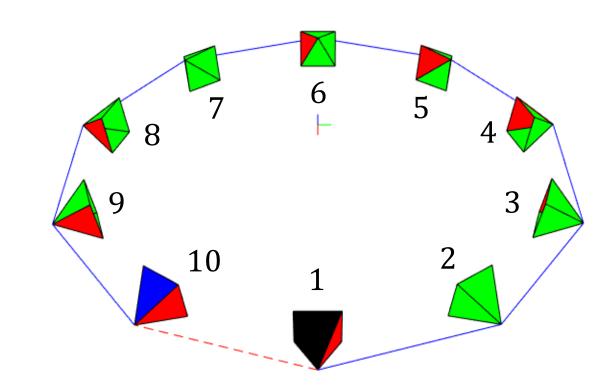
TOSHIBA

Leading Innovation >>>

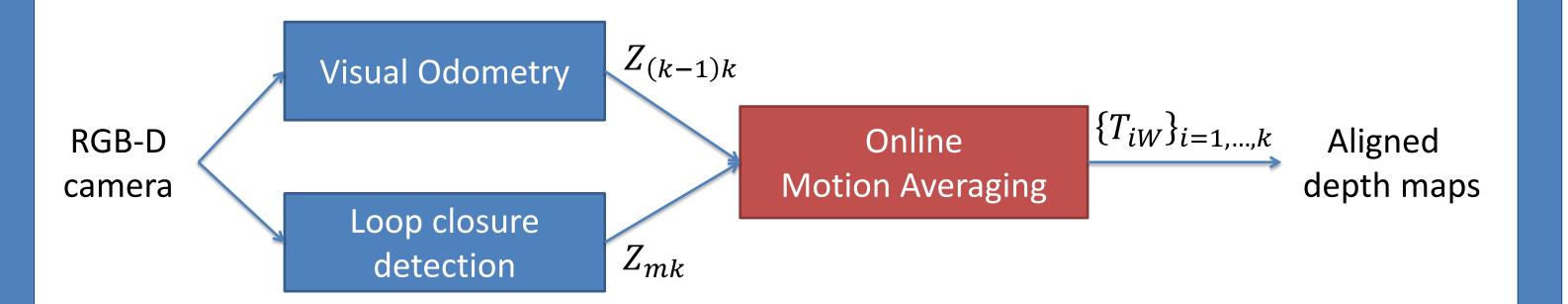


Estimate absolute transformations $\{T_{iW} \in G\}_{i=1,...,N}$





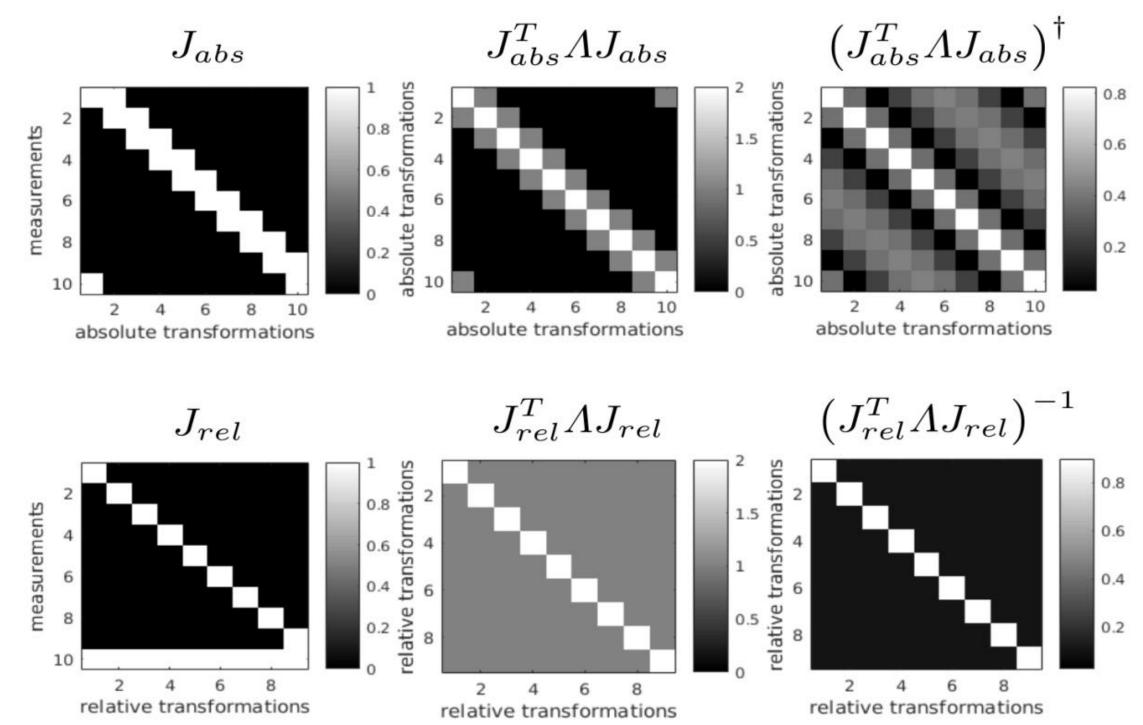
Example of application: RGB-D mapping



Contributions

To perform **online motion averaging on large scale problems**, we propose an algorithm that is:

1. Computationally efficient: process the measurements one by one



The relative parametrization induces very small correlations!

Motivation for a variational Bayesian approximation of the posterior distribution assuming independent relative transformation.

Online Variational Bayesian Motion Averaging Algorithm

• Approximated posterior at time k-1

- **2. Memory efficient:** approximate the posterior distribution of the absolute transformations with a number of parameters that grows at most linearly over time
- **3. Robust:** detect and remove wrong loop closures

Reparametrization of the absolute transformations

 $T_{i(i+1)} = T_{iW}T_{(i+1)W}^{-1}$

	Absolute	Relative
Estimated transformations at time instant <i>k</i>	$\{T_{iW}\}_{i=1,,k}$	$\{T_{i(i+1)}\}_{i=1,\dots,k-1}$

 $p(\mathcal{X}_{k-1}|\mathcal{D}_{\text{odo},k-1},\mathcal{D}_{\text{LC},k-1}) = \prod_{i=1}^{k-2} \mathcal{N}_G(T_{i(i+1)};\overline{T}_{i(i+1)},P_{i(i+1)})$

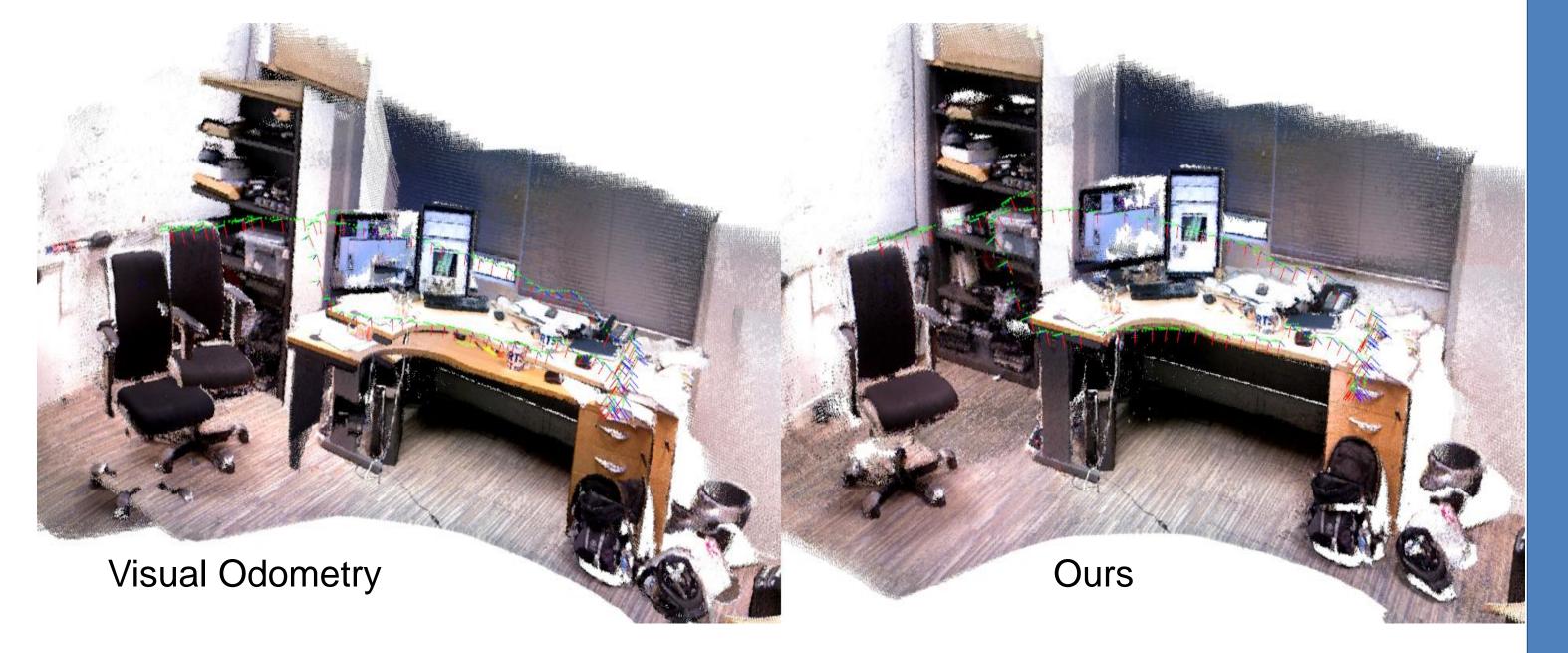
- Processing of a new odometry measurement $p(\mathcal{X}_k | \mathcal{D}_{\text{odo},k}, \mathcal{D}_{\text{LC},k-1}) = \prod_{i=1}^{k-1} \mathcal{N}_G(T_{i(i+1)}; \overline{T}_{i(i+1)}, P_{i(i+1)})$ where $\overline{T}_{(k-1)k} = Z_{(k-1)k}$ and $P_{(k-1)k} = \Sigma_{(k-1)k}$
- Validation gating of a new loop closure measurement $p(Z_{lk}|\mathcal{D}_{odo,k}, \mathcal{D}_{LC,k-1}) \approx \mathcal{N}_G(Z_{lk}; \prod_{i=l}^{k-1} \overline{T}_{i(i+1)}, \Sigma_{(k-1)k} + \sum_{i=l}^{k-1} J_{li} P_{i(i+1)} J_{li}^T)$
- Processing of a new loop closure measurement $p(\mathcal{X}_k | \mathcal{D}_{\text{odo},k}, \mathcal{D}_{\text{LC},k-1}, Z_{lk}) \approx \prod_{i=1}^{k-1} \mathcal{N}_G(T_{i(i+1)}; \breve{T}_{i(i+1)}, \Xi_{i(i+1)})$ where $\{\breve{T}_{i(i+1)}\}_{i=1,\dots,k-1}$ is obtained via a Gauss-Newton and $\{\Xi_{i(i+1)}\}_{i=1,\dots,k-1}$ is computed via a Variational Bayesian approximation

Results

G = SE(3): Binocular 6D SLAM

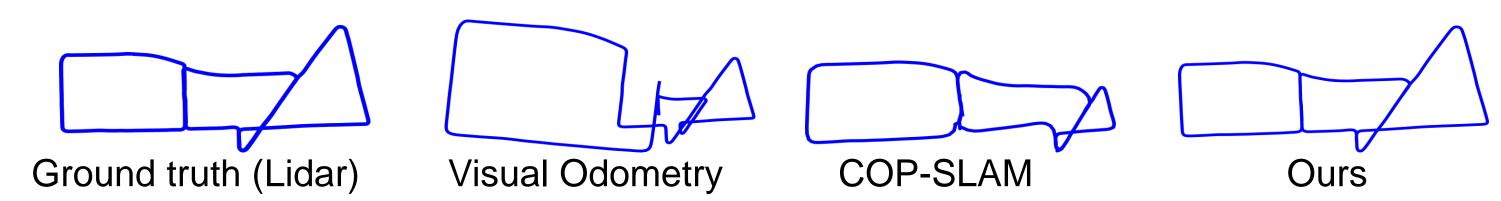
RMSE position (m)

Time (ms)



	Sphere	KITTI OO	KITTI 02	Sphere	KITTI OO	KITTI 02
Ours	2,1	2,7	13,6	971	65	29
COP-SLAM	6,0	3,8	19,7	350	7	2
LG-IEKF	0,8	2,0	13,6	n/a	n/a	n/a
g²o	0,2	2,4	13,8	40000	1336	693

G = Sim(3): Monocular Visual SLAM (KITTI 13)



G = SL(3): Video Mosaicing (see supplementary material)