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Abstract

This paper deals with the trajectory estimation of a
monocular calibrated camera evolving in a large unknown
environment, also known as monocular visual simultaneous
localization and mapping. The contribution of this paper is
threefold: 1) We develop a new formalism that builds upon
the so called Known Rotation Problem to robustly estimate
submaps (parts of the camera trajectory and the unknown
environment). 2) In order to obtain a globally consistent
map (up to a scale factor), we propose a novel loopy be-
lief propagation algorithm that is able to efficiently align
a large number of submaps. Our approach builds a graph
of relative 3D similarities (computed between the submaps)
and estimates the global 3D similarities by passing mes-
sages through a super graph until convergence. 3) To ren-
der the whole framework more robust, we also propose a
simple and efficient outlier removal algorithm that detects
outliers in the graph of relative 3D similarities. We exten-
sively demonstrate, on the TUM and KITTI benchmarks as
well as on other challenging video sequences, that the pro-
posed method outperforms the state of the art algorithms.

1. Introduction
Estimating a 3D model of the environment in which a

camera evolves as well as its trajectory, also known as Vi-
sual Simultaneous Localization And Mapping (VSLAM),
is an important problem for the computer vision commu-
nity. Indeed, a large number of applications, such as image-
based localization [1, 2] or augmented reality, assume that
a 3D model of the environment has been previously recon-
structed. Thus, being able to accurately estimate this 3D
model is essential in order for these applications to operate
correctly.

Robust, accurate and scalable VSLAM algorithms for a
stereo camera have been proposed [3, 4] a few years ago.
However, stereo cameras are still not widely spread com-
pared to monocular cameras which are present on every
smart-phone. As a consequence, this paper focuses on the

monocular VSLAM problem.
In this problem, one of the major difficulties, compared

to stereo VSLAM, consists in the fact that the scale of the
scene is not observed. In order to prevent scale drift, loop
closures (i.e when the camera comes back at a place already
visited) need to be detected. However, a large environment
usually contains places that look alike. Thus when a camera
evolves in such an environment, wrong loop closures may
be detected, resulting in an erroneous 3D model.

We propose a novel robust monocular VSLAM algo-
rithm which is able to operate on long challenging videos
where the state of the art algorithms fail. First of all,
submaps (parts of the camera trajectory and the unknown
environment) are robustly and accurately estimated using
the so-called Known Rotation Problem [5]. We then build
a graph of relative 3D similarities (computed between the
submaps). In order to reject the outlier relative 3D similari-
ties coming from wrong loop closures, we propose a simple
and efficient outlier removal algorithm. Finally, to obtain a
scalable monocular VSLAM framework, we derive a loopy
belief propagation algorithm which is able to align a large
number of submaps very efficiently.

The rest of the paper is organized as follows: section 2
deals with the related works. Our novel monocular VSLAM
framework is presented in section 3. The two proposed al-
gorithms dedicated to outlier rejection and inference in the
graph of relative 3D similarities are described in section 4.
In section 5, the limitations of the proposed approach are
discussed while in section 6, our monocular VSLAM for-
malism is evaluated experimentally. Finally, a conclusion is
provided in section 7.

2. Related Work
The problem of monocular VSLAM has been studied

for 20 years. Thus an exhaustive state of the art is be-
yond the scope of this paper. Here, we simply describe the
most recent approaches and their differences with our novel
method. Almost all the recent approaches, as well as the
one we propose in this paper, consist in two main modules:

1) A Visual Odometry (VO) approach which estimates
the camera poses and the 3D model associated to several
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Figure 1: Our Monocular VSLAM Framework

consecutive video frames. In [6] and [7, 8], VO consists
in building submaps using a Kalman filter and incremental
like Bundle Adjustment (BA), respectively. [9] does not ex-
plicitly builds submaps but employs incremental BA with a
sliding window over the last 10 keyframes. Finally, in [10],
a recent semi-dense approach is used to estimate the depth
map of each keyframe. In this paper, we propose a differ-
ent VO approach which is based on the so-called Known
Rotation Problem [5]. It allows us to globally (i.e not incre-
mentally) estimate submaps of keyframes while efficiently
rejecting outlier tracks thanks to a Linear Program (LP).

2) A loop closure module which prevents scale drift. It
consists in detecting loop closures between the submaps as
in [6, 7] (or directly between the keyframes as in [9, 10])
and minimizing a cost function. To do so, [6] employs
the hierarchical framework of [11], [7] uses Preconditioned
Gradient Descent while [9] and [10] apply a Levenberg-
Marquardt algorithm. Also, none of the previous previously
cited methods deal with erroneous loop closures which in-
creases their chances of failure especially in large environ-
ments. Contrary to those approaches, we propose a loopy
belief propagation algorithm which is able to efficiently
handle a large number of loop closures without the need
of any initialization. Furthermore, we propose a simple and
efficient outlier removal algorithm which is able to reject
false loop closures.

The framework proposed in [12] is closely related to the
one proposed in [9]. However several modifications have
been proposed and they achieve the state of the art results
on the KITTI dataset. Thus, in the rest of the paper, we
compare our novel monocular VSLAM framework to the
state of the art algorithms [12] and [10].

3. Proposed Monocular VSLAM Framework
The proposed monocular VSLAM framework consists in

4 modules (Keyframe Selection, Submap Reconstruction,
Pairwise Similarity Estimation and Relative Similarity Av-
eraging) arranged as illustrated in Fig.1. The first three
modules are presented in this section while the last one is
described in the next section.

3.1. Keyframe Selection

Selecting keyframes among all the frames of a video is
necessary in order to keep a reasonable computational com-
plexity during the monocular VSLAM process. In order to

select keyframes, we apply a Lucas-Kanade tracker by de-
tecting and tracking Harris Points of Interest (PoI) in the
video frames. A frame is selected as a keyframe when the
Euclidean distance between the PoI of the current frame
and the PoI of the previous keyframe is greater than a given
threshold (typically 5% of the image width).

This algorithm allows to efficiently select keyframes for
any camera motion.

3.2. Submap Reconstruction

After having selected keyframes, we define clusters of
L consecutive keyframes. Then, we apply a Structure
from Motion (SfM) algorithm based on the Known Rota-
tion Problem [5] to each cluster independently in order to
obtain submaps. The SfM algorithm we propose is similar
to the one proposed in [13] yet significantly different since it
deals with temporally consecutive frames and not unordered
image collections. Let us now describe this SfM algorithm.

First of all, SURF PoI [14] are extracted from all
keyframes. Then the SURF descriptors are matched be-
tween pairs of keyframes in order to close loops inside each
submap. The epipolar geometry is robustly estimated (five
point algorithm [15] combined with a RANSAC [16] algo-
rithm and a final BA) between pairs of images using both
the SURF matches and the previously tracked Harris PoI.
Since the keyframes are temporally consecutive, this is only
performed for a subset of pairs of images.

After that, the relative 3D orientations extracted from the
epipolar matrices are used to estimate the global 3D orienta-
tions. In order to robustly estimate the global orientations,
it is actually possible to employ the relative similarity av-
eraging algorithms (Alg.1 and Alg.2 that we will describe
in the next section) since a 3D orientation is simply a 3D
similarity with a scale of 1 and no translation part.

Now that the global 3D orientations have been estimated,
we build tracks of PoI and employ an LP to solve the Known
Rotation Problem, i.e to estimate the camera pose of each
keyframe as well as the 3D point associated to each track.
Once again, this step is made robust to erroneous tracks by
employing the Linear Program1 proposed in [5]. A BA al-
gorithm is finally applied to refine the reconstruction.

This SfM algorithm is able to robustly and accurately es-
timate each submap independently, even for small baselines
and an environment not completely static (see section 6).

3.3. Pairwise Similarity Estimation

Once the submaps have been reconstructed, the loop clo-
sures are detected in two steps. First, a bag of words ap-
proach is applied to the SURF descriptors of the 3D points
of all the submaps to obtain an unique descriptor for each
submap. Then, a 3D similarity is estimated between each

1We use the MOSEK optimization toolbox for Matlab to solve the LP.



(a) Example of video frames
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(b) Ground truth
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(c) (top) Outlier removal result using only the
temporally consecutive measurements. Some
outliers are classified as inliers. (down) The tra-
jectory is not correctly estimated.
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(d) (top) Result of Alg.1. The outliers are per-
fectly detected, (down) The trajectory is cor-
rectly estimated (we obtain an almost perfect
rectangle).

Figure 2: Example of result on a video taken in the corridor of a building (the corridor forms a rectangle) (tχ2 = 16, n = 10).
In the labeling matrices, a white pixel is an inlier, a black pixel corresponds to an unavailable measurement and a gray pixel
corresponds to an outlier.

submap and its 10 nearest neighbors. The relative 3D simi-
larity between two submaps is estimated as follows:

1. The SURF descriptors of the 3D points of each submap
are matched using a k-d tree.

2. A 3 points algorithm [17] combined with a RANSAC is
applied to the matches to obtain a 3D similarity, followed
by a non-linear refinement.

In all these steps, only the 3D points that have a small co-
variance are involved. Also, the relative similarity between
two temporally consecutive submaps is always computed.

4. Large Scale Relative Similarity Averaging

After having estimated relative 3D similarities between
pairs of submaps, we wish to estimate the global 3D sim-
ilarities, i.e the 3D similarities between a global reference
frame and the reference frame of each submap, in order to
align all the submaps.

4.1. Preliminaries

4.1.1 Geometry of 3D similarities

A 3D similarity Xij =

[
sijRij Tij
01×3 1

]
⊂ R4×4 is a

transformation matrix where sij is a scale factor, Rij is
a 3D rotation matrix and Tij is a 3D vector. Applying
Xij to a 3D point xj ∈ R3 defined in a reference frame
(RF) j allows to transform xj from RF j to RF i, i.e[
xi

1

]
= Xij

[
xj

1

]
. Two similarities Xij and Xjk can

be composed using matrix multiplication to obtain another
similarity Xik = XijXjk. Inverting a similarity matrix
Xij produces the inverse transformation, i.e X−1

ij = Xji.
Consequently multiplying a transformation with its inverse
produces the identity matrix: XijXji = Id. From a math-
ematical point of view, the set of 3D similarities form the
7-dimensional matrix Lie group Sim (3) [18]. The matrix
exponential exp and matrix logarithm log establish a lo-
cal diffeomorphism between an open neighborhood of Id
in Sim (3) and an open neighborhood of 04×4 in the tan-



gent space at the identity, called the Lie Algebra sim (3).
The Lie Algebra sim (3) is a 7-dimensional vector space.
Hence there is a linear isomorphism between sim (3) and
R7 that we denote as follows: [·]∨ : sim (3) → R7 and
[·]∧ : R7 → sim (3). We also introduce the following no-
tations: exp∧ (·) = exp

(
[·]∧
)

and log∨ (·) = [log (·)]∨. It
means that a transformation Xjj′ that is “close enough” to
Id can be parametrized as follows: Xjj′ = exp∧ (δjj′) ∈
Sim (3). Finally, we remind the adjoint representation
Ad (·) ⊂ R7×7 of Sim (3) on R7 that enables us to trans-
port an increment εiij ∈ R7, that acts onto an element Xij

through left multiplication, into an increment εjij ∈ R7, that
acts through right multiplication:

exp∧
(
εiij
)
Xij = Xijexp

∧
(
εjij

)
(1)

where
εjij = Ad

(
X−1
ij

)
εiij = Ad (Xji) ε

i
ij (2)

4.1.2 Concentrated Gaussian Distribution on Sim (3)

The distribution of a random variable Xij ∈ Sim (3)
is called a (right) concentrated Gaussian distribution on
Sim (3) [19] of “mean” µij and “covariance” P iij if:

Xij = exp∧
(
εiij
)
µij (3)

where εiij ∼ NR7

(
07×1, P

i
ij

)
and P iij ⊂ R7×7 is a definite

positive matrix. Such a distribution provides a meaningful
covariance representation and allows us to quantify the un-
certainty of the 3D similarities.

4.2. Relative Similarity Averaging Problem

4.2.1 Without wrong loop closures

Assuming that the relative similarity measurements com-
puted in section 3.3 do not contain wrong loop closures, the
problem of relative similarity averaging consists in mini-
mizing the following cost function:

argmin
{XiS}i∈V

 ∑
(i,j)∈E

∥∥log∨ (ZijXjSX
−1
iS

)∥∥2

Σi
ij

 (4)

where ‖·‖2· is the Mahalanobis distance, Zij ∈ Sim (3)
is a noisy relative similarity measurement between a RF j
and a RF i. S is the global RF and XiS and XjS are the
global similarities that we want to estimate. This formula-
tion comes from the generative model:

Zij = exp∧
(
biij
)
XiSX

−1
jS (5)

where biij ∼ NRp

(
0p×1,Σ

i
ij

)
is a white Gaussian noise. In

practice, the relative 3D similarity measurement Zij is ob-
tained, as explained in section 3.3, by computing the rela-
tive 3D similarity between submaps i and j. The covariance

matrix Σiij is obtained using a Laplace approximation after
the non-linear refinement.

The problem (4) can be seen as the inference in a fac-
tor graph G = {V, E}, where each vertex Vi corresponds
to a global similarity XiS and each pairwise factor Eij cor-
responds to a relative measurement Zij (see Fig.4a) which
links two vertices Vi and Vj .

4.2.2 In the presence of wrong loop closures

The problem (4) is based on an L2-norm and consequently
is not robust to wrong loop closures. When a camera
evolves in a large environment, it is common to detect
wrong loop closures that leads to an outlier relative simi-
larity. Consequently, before solving (4), we need to remove
the outlier relative 3D similarity measurements in the graph.

4.3. Related Work

In [19], an Iterated Extended Kalman Filter on Lie
Groups is applied to the same problem as (4). It allows
to efficiently estimate both the global similarities while re-
jecting outliers. However, this approach cannot be applied
to estimate a large number of global similarities (N > 500)
because of the size of the covariance matrix (7N × 7N ).

In [20], a method based on collecting the loop errors in
the graph is derived to infer the set of outliers. Neverthe-
less, collecting the loop errors becomes intractable and the
maximum loop length is limited to 6.

Also, several recent approaches have been proposed in
the field of graph-based SLAM [21, 22, 23]. These ap-
proaches employ the Levenberg-Marquardt algorithm to si-
multaneously perform the inference in the graph and reject
outliers. However, they do not deal with 3D similarity mea-
surements.

Contrary to these approaches, we show that by intrinsi-
cally taking into account the nature of the relative similarity
averaging problem in the context of VSLAM, it is possible
to separate the outlier rejection task from the inference. In
the next section, we present a simple and efficient outlier
removal algorithm while our novel message passing algo-
rithm dedicated to large scale relative similarity averaging
is described in section 4.5.

4.4. Outlier Removal Algorithm

In order to efficiently reject outliers, we assume that
temporally consecutive measurements Z(i−1)i are not out-
liers, i.e relative similarities computed between consecutive
submaps are not wrong loop closures. This is a classical
assumption in robust graph based SLAM [22] which is ver-
ified in all our experiments (see section 6).

In an outlier free graph, integrating the relative similar-
ities along a cycle results in an “small” error in the sense



Algorithm 1 Outlier Removal Algorithm
Inputs: {Zij}1≤i<j≤N (relative similarities),{

Σiij
}

1≤i<j≤N (covariance matrices), tχ2 (χ2 p-value)

Outputs: E (set of inlier relative similarity measurements)

1. Initialize an empty graph G = {V, E}
2. Add vertex X1S to V
3. For k from 2 to N

(a) Add XkS to V
(b) Add

{
Z(k−1)k,Σ

k−1
(k−1)k

}
to E

(c) For each measurement Zlk where l < k
i. Find shortest path from XkS to XlS in G

ii. Compute the cycle error ε and covariance P
iii. If εTP−1ε < tχ2 then add

{
Zlk,Σ

l
lk

}
to E

that:

εTP−1ε < tχ2 (6)

where ε is the cycle error, P is its covariance and tχ2 is
a threshold based on the p-value of χ2 (7) [24]. A cycle
error and its covariance can be obtained efficiently using
the following two equations (7) and (8) that allows to inte-
grate/compose two relative similarities as well as their co-
variances.

Zkl = ZkmZml (7)

Σkkl ' Σkkm +Ad (Zkm) ΣmmlAd (Zkm)
T (8)

The simple method that consists in integrating the tem-
porally consecutive measurements and checking the loop
closures with (6) fails for long videos (see Fig.2c). Thus we
propose an efficient algorithm (see Alg.1) that incremen-
tally checks the loop closures by finding the shortest loop in
a graph of inliers, computing the cycle error and covariance
and adding the loop closure to this same graph of inliers if
(6) is verified. An example of result of Alg.1 is presented in
Fig.2d.

4.5. Loopy Belief Propagation

In this section, we propose a loopy belief propagation
algorithm called Large Scale Relative Similarity Averaging
(LS-RSA) that relies on the specific structure of the problem
(4) and allows to estimate a large number of global similar-
ities (such as N = 10000) very efficiently.

It consists in first partitioning the original graph G
into NS sub-graphs

{
Gk =

{
Vk, Ek

}}
k=1:NS

(see Fig.4a).
Then our approach alternates between:

i) solving the following problem for each sub-graph Gk
independently (see Fig.4b):

(a) Example of original factor graph. Removing the factors represented by
a dotted line results in a temporally partitioned factor graph with 3 sub-
graphs of size n = 3.

(b) Factor graph involved in step 3) of Alg.2. The subgraphs are discon-
nected and thus the inference can be performed in parallel.

(c) Super factor graph involved in steps 4) and 5) of Alg.2.

Figure 4: Factor graphs involved in our LS-RSA algorithm

argmin
{XiRk}i∈Vk

 ∑
(i,j)∈Ek

∥∥log∨ (ZijXjRk
X−1
iRk

)∥∥2

Σi
ij

+
∑
i∈Vk

∥∥log∨ (ZiRk
X−1
iRk

)∥∥2

Σi
iRk

 (9)

where each ZiRk
is a global similarity measurement with

covariance ΣiiRk
that can be interpreted as a message sent

from the other sub-graphs to the node Vki of Gk;
ii) computing the messages, i.e the global similarity mea-

surements ZiRk
and their covariances ΣiiRk

, by building
and solving a super-graph GSuper=

{
VSuper, ESuper

}
(see

Fig.4c).
Each sub-graph can be processed in parallel which

makes this new message passing algorithm very efficient.
The pseudo-code of the LS-RSA is presented in Alg.2.
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(a) iteration 1, residual 24.46
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(b) iteration 2, residual 5.31
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(c) iteration 5, residual 0.46

Figure 3: Illustrations of the iterations of the LS-RSA algorithm on the video sequence presented in Fig.2 (n = 10)

Proposed [10] [25] [26] [27] [28]

Uses Depth No No No No Yes Yes

fr2/desk 2.22 4.52 13.50 x 1.77 9.5

fr2/xyz 1.28 1.47 3.79 24.28 1.18 2.6

Figure 5: Left: Results on the TUM RGB-D dataset. The figures represent the absolute trajectory RMSE (cm) [29]. Right:
Camera trajectory estimated with the approach proposed in this paper on the fr2/desk sequence. Notice the small error w.r.t
the scale of the trajectory, hence the overlap of the curves. This plot was obtained using the online evaluation tool available
on TUM RGB-D dataset webpage.

We now detail each step of this novel algorithm:
1) Graph Partitioning: The first step consists in tempo-

rally partitioning the original graph G into NS sub-graphs
of maximum size n where n > 1. In the rest of the paper,
we assume, without loss of generality, that N is a multi-
ple of NS i.e each sub-graph has exactly n nodes. Here,
the term “temporally” means that G is partitioned by re-
moving the measurements that connect the following sets of
nodes: {XiS}i=1:n, {XiS}i=n+1:2n, ..., {XiS}i=N−n+1:N

(see Fig.4a). The removed measurements are called inter-
measurements.

2.a) Messages Initialization: Initialize each message
ZiRk

with the identity matrix and its covariance matrix
ΣiiRk

with infinite covariance and go to 3).
2.b) Messages Computation: Using the previously esti-

mated super global similarities, we can compute the mes-
sages that are going be passed between the sub-graphs (ac-
tually between nodes of sub-graphs). A node sends a mes-
sage to another if both nodes are connected by an inter-
measurement. For each inter-measurement Zij , a message
is created and consists in computing the global similarity
measurement ZiRk

and its covariance ΣiiRk
as follows:

ZiRk
= ZijXjRl

XRlSX
−1
RkS

(10)

ΣiiRk
= AdG (Zij)

[
P jjRl

+AdG (XjRl
)
{
PRl

RlS

+AdG
(
XRlSX

−1
RkS

)
PRk

RkS
AdG

(
XRlSX

−1
RkS

)T}
AdG (XjRl

)
T
]
AdG (Zij)

T
+ Σiij (11)

This can be interpreted as a message sent from XjRl
to

XiRk
. If a node XiRk

receives multiple messages i.e sev-
eralZiRk

have been computed becauseXiRk
is connected to

several inter-measurements, we apply a Karcher mean (see
[30] section IV) to summarize those messages into a single
one.

3) Subgraphs Optimization: For each sub-graph Gk,
we estimate the global similarities {XiRk

}i∈Vk as well
as the marginal covariances of the posterior distribution{
P iiRk

}
i∈Vkby applying a Levenberg-Marquardt to solve

(9) followed by a Laplace approximation. Note that if there
is only one sub-graph (NS = 1), then the algorithm stops
and returns the result. This step is illustrated by Fig.4b.

4) Super Graph Building: We now build a super graph
GSuper =

{
VSuper, ESuper

}
(see Fig.4c) from the out-

put of step 3) and the inter-measurements. The edges of
this super graph are relative similarities between the refer-
ence frames {Rk}k=1:NS

called super-measurements. Each
inter-measurement Zij with covariance Σiij leads to the fol-
lowing super-measurement:

ZRkRl
= X−1

iRk
ZijXjRl

(12)

with covariance matrix:

ΣRk

RkRl
= AdG

(
X−1
iRk

) (
P iiRk

+ Σiij

+AdG (Zij)P
j
jRl

AdG (Zij)
T
)
AdG

(
X−1
iRk

)T
(13)

Since each inter-measurement leads to a super-
measurement, we may have several super-measurements



Algorithm 2 Large Scale Relative Similarity Averaging
(LS-RSA)
Inputs: {Zij}1≤i<j≤N (relative similarities),{

Σiij
}

1≤i<j≤N (covariance matrices), n (subgraph size)

Outputs: {XiS}1≤i≤N (global similarities),
{
P iiS
}

1≤i≤N
(marginal covariance matrices of global similarities)

1) Partition the graph.
2.a) Initialize the messages and go to 3).
2.b) Compute the new messages.
3) Solve eq.(9) for each subgraph.
4) Build the super graph.
5) Apply LS-RSA (recursive call) to the super graph.
6) Compute the quantities of interest, i.e {XiS}i∈V and{
P iiS
}
i∈V , and the residual of eq.(4). If the residual has

not been reduced, then return, else go to 2.b).

between two nodes of the super graph. When it happens, we
average these super-measurements using a Karcher mean
to get only one super-measurement (and its covariance
matrix) between two nodes.

5) Super Graph Optimization: Once the super-graph
is built, we apply the LS-RSA algorithm in order to
obtain the super global similarities {XRkS}k=1:NS

and{
PRk

RkS

}
k=1:NS

. Note that during this step, the LS-RSA

algorithm is recursively called until step 1) produces only
one sub-graph (in this case, the LS-RSA exits at step 3)).

6) The quantities of interest, i.e {XiS}i∈V and
{
P iiS
}
i∈V

can be obtained as follows:

XiS = XiRk
XRkS (14)

P iiS = P iiRk
+AdG (XiRk

)PRk

RkS
AdG (XiRk

)
T (15)

and the residual of (4) can be computed. If this residual
is higher than the one computed at the previous iteration,
i.e the error has been not reduced, then the algorithm exits.
Otherwise go to 2.b).

In section 6, we demonstrate on a large number of video
sequences that the LS-RSA algorithm provides an accu-
rate solution to the relative similarity averaging problem.
A thorough analysis of the convergence properties of the
proposed algorithm is beyond the scope of this paper and
remains for future work.

5. Limitations
The monocular VSLAM framework proposed in this pa-

per has several limitations. First of all, in each submap, the
camera motion must not be a pure rotation otherwise the 3D
point cloud cannot be estimated. However, due to the use of
the known rotation problem, the proposed framework can

provide accurate estimates even for small translations of the
camera. Secondly, the 3D environment to be reconstructed
should be static. Nevertheless, the robustness of our frame-
work allows some objects to move in the environment, such
as cars in the KITTI dataset (see section 6.2). Thirdly, if
the temporally consecutive relative similarities are not out-
lier free, then Alg.1 will not remove all the outliers. How-
ever, in all our experiments it never happened. Finally, our
monocular VSLAM approach is currently coded in Matlab
(which will be made publicly available) and the processing
time is 2.5 hours for a video sequence of 10000 frames.

6. Experiments
In this section, we compare the performances of the pro-

posed approach to the state of the art algorithms [10] and
[12] on the TUM and KITTI datasets as well as on sev-
eral other challenging videos. For all these experiments,
the parameters of our novel approach have been optimized
by hand on one video once and for all (L = 16, n = 10,
tχ2 = 16, as well as several other parameters such as
RANSAC thresholds). Increasing L over 16 did not led to
notable improvements. Also, in monocular VSLAM the 3D
model and the camera trajectory are estimated up to a scale
factor. Thus, in the rest of this section, when evaluating
the results of the different approaches w.r.t the ground truth,
we estimate a 3D similarity by minimizing the distance be-
tween the estimated camera trajectory and the ground truth
camera trajectory.

6.1. Quantitative comparison on the TUM dataset

In [10], the TUM RGB-D dataset [29] is used to evalu-
ate their algorithm. Thus, we chose this same benchmark
to quantitatively evaluate the performances of our approach
w.r.t [10]. In Fig.5 (left), the absolute trajectory RMSE (cm)
[29] of our novel framework, [10], [25], [26], [27] and [28]
are presented2. For each video sequence, our approach pro-
duces a lower RMSE than the state of the art algorithm [10].
The superior performances of our approach are probably
due to the fact that in our approach a submap is estimated
from several keyframes while in [10], once a keyframe is se-
lected, the semi-dense depth map of the previous keyframe
is not updated anymore. It can also be seen that the results
of our approach tend towards the results of the state of the
art RGB-D SLAM algorithm [27] that uses an RGB-D cam-
era instead of a classical monocular RGB camera. In Fig.5
(right), the camera trajectory estimated with our approach
on the FR2/desk sequence is presented.

6.2. Qualitative comparison on the KITTI dataset

In [12], the KITTI dataset [31] is used to evaluate their
algorithm. Thus, we chose this same benchmark to qualita-

2The results of [10, 25, 26, 27, 28] are taken from Fig.9 in [10].
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Figure 6: Qualitative comparison on the camera trajectories estimated with the approach proposed in this paper and [12] on
several sequences of the KITTI dataset. Most of the time, the camera trajectory estimated with our approach overlaps with
the ground truth as opposed to [12] which deviates from the real trajectory.

tively evaluate the performances of our approach w.r.t [12].
In Fig.6 the camera trajectories estimated with our approach
and with [12] are compared to the ground truth trajectories.
On each of these plots the camera trajectory estimated by
our framework is closer to the ground truth than the one
estimated by [12]. This is probably due to the fact that
in all these video sequences, the environment is not com-
pletely static (cars are moving). Consequently, our frame-
work which has been tailored to be robust outperforms [12].

6.3. Qualitative comparison on challenging videos

Let us now present the results of our approach on chal-
lenging videos taken from a rolling shutter camera. The
videos are corrupted by motion blur, the environment is
sometimes poorly textured and the camera trajectories con-
tain small camera translations. In Fig.2d, we show the es-
timated camera trajectory along the corridor of a building
(the corridor forms a rectangle). One can see that the es-
timated trajectory is almost perfectly rectangular and flat.
On that video sequence the semi-dense tracker of [10] fails.
Due to the lack of space, results on other video sequences

are provided as supplementary material.

7. Conclusion
The contribution of this paper is threefold:

1. A novel visual odometry approach based on the so-called
Known Rotation Problem that allows to robustly estimate
each submap independently.

2. A simple and efficient outlier removal algorithm to reject
the outlier relative 3D similarities coming from wrong
loop closures.

3. A loopy belief propagation algorithm which is able to
align a large number of submaps very efficiently.

Using state of the art tools coming from the field of SfM
from unordered image collections, we proposed a novel ro-
bust monocular VSLAM framework which is able to oper-
ate on long challenging videos. The method has been vali-
dated experimentally and compared to the two most recent
state of the art algorithms which it outperforms both quali-
tatively and quantitatively. Moreover, in all our experiments
(4 different cameras with different resolutions), the param-
eters of our method have been set once and for all proving
the flexibility of the proposed approach.
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