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Abstract

It has been experimentally shown in the literature that half-quadratic (HQ) lifting
leads to very effective methods for robust cost minimization when combined with a joint
optimization strategy. More precisely, the multiplicative formulation of HQ minimiza-
tion was employed in these works. In this work we address the questions whether the
complementary additive form of HQ lifting is beneficial for solving robust estimation
problems. Additive HQ minimization is appealing due to its connection with a quadratic
relaxation and because it fully pushes the difficulties induced by robust costs to inde-
pendent terms in the (lifted) cost function. We also propose a “double lifting” method
combining additive and multiplicative HQ minimization. We report numerical results for
synthetic problems and standard bundle adjustment instances.

1 Introduction

Robust cost optimization is the task that consists in fitting parameters to data points contain-
ing outliers. This fundamental problem arises in many applications in 3D computer vision
such as bundle adjustment [13], optical flow [2], registration of 3D surfaces [16], etc. When
the proportion of outliers is reasonable, i.e typically less than 50%, using convex kernels',
such as Huber or Charbonnier kernels, per data point sufficiently mitigates the large residuals
induced by outliers. However, when the data contains a large proportion of outliers, convex
kernels are not “robust” enough and one has to rely on a quasi-convex kernel, such as Tukey’s
biweight or Welsch kernels, to significantly downweight the influence of outliers. Neverthe-
less, summing quasi-convex functions (one for each data point/residual) creates many local
minima and consequently makes the optimization problem really challenging.

In order to be useful for most computer vision applications, an optimization algorithm
that addresses this challenging scenario should be both computationally efficient and able to
escape poor local minima. One kind of algorithm, that satisfies these two requirements and
turns out to be successful in practice [14], consists in embedding the original robust cost into
a higher dimensional space by applying so-called Multiplicative Half-Quadratic lifting (M-
HQ) [6]. An efficient non-linear-least-square (NLLS) solver is then used to jointly minimize
the lifted cost w.r.t. both the parameters of interest and the lifting variables.

(© 2018. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
Here, the term “kernel” is used as a synonym of “loss function”.
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In this paper, we investigate a different type of lifting called Additive Half-Quadratic
lifting (A-HQ) [7] and show that both A-HQ and M-HQ can be combined in order to reach
better local minima than M-HQ alone while still leveraging the efficiency of an NLLS solver.

The rest of the paper is organized as follows: Section 2 discusses the related work while
notations are introduced in Section 3. M-HQ, A-HQ and the combination we propose are
described in Section 4. In Section 5, numerical evaluations of our approach are presented
and a conclusion is provided in Section 6.

2 Related Work

In this section, the state of the art approaches for robust cost optimization are briefly de-
scribed and compared to the novel algorithm we propose in this paper. The Iteratively
Reweighted Least Squares (IRLS) algorithm [8] is the current workhorse for problems where
a (very) good initialization of the parameters is available. This is due to the fact that IRLS
seeks to directly minimize the robust cost with an NLLS solver. Unfortunately, IRLS gets
easily trapped in a local minimum close to the initial value of the parameters. This (empiri-
cal) observation also holds for other established approaches that directly minimize the robust
cost such as “Trigg’s correction” [13] and “square rooting the kernel” [5].

A different kind of algorithm that is usually referred to as graduated optimization al-
gorithms [3, 4, 10, 11, 12] are explicitly designed to escape bad poor local minima. This
is achieved by building a sequence of successively smoother versions of the original robust
cost. On the one hand, solving that sequence of optimization problems (starting from the
smoothest version and finishing with the original robust cost) usually allows to guide the
optimization process towards a good local minimum. On the other hand, solving an entire
sequence of optimization problems makes the whole approach computationally inefficient.

To the best of our knowledge, the only algorithm that meets our requirements (compu-
tational efficiency and ability to escape poor local minima) is the M-HQ based algorithm
presented in [14, 17]. This approach consists in embedding the original robust cost into a
higher dimensional space by introducing one Multiplicative Lifting Variable (M-LV) per data
point. The lifted cost is then jointly minimized w.r.t. the parameters of interest and M-LVs
using an NLLS solver. This joint optimization allows to escape bad local minima while
each iteration is very efficient thanks to the NLLS solver. The case of multiple M-LVs per
residuals is considered in [15]. In this paper, instead of embedding the original robust cost
into a higher dimensional space as in [14], we investigate a different type of lifting called
Additive Half-Quadratic lifting and demonstrate that both M-HQ and A-HQ can actually be
combined to obtain an algorithm outperforming the M-HQ based algorithm of [14].

3 Notations & Preliminaries

In this paper, we are interested in minimizing cost functions ¥(x) (w.r.t. x) of the following
form:

P(x) =) vt €

where x € R? are the parameters of interest, f; : R? — R4 is the residual function corre-
sponding to data pointy; € R?, ||-|| is the L2-norm and y : R +— R{ is a robust kernel. More
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precisely, y should satisfy the following properties:

i) w(0) =0 and y”(0) = 1 which are normalization properties that allow to compare the
robustness of different kernels, and

i) ¢ : Ry — R defined via ¢(||f;(x)]|>/2) := y(||f:(x)]|) is a concave and monotonically
increasing function. Here the monotonically increasing property means that a large residual
should lead to a higher cost than a small residual, while the concavity allows to mitigate the
influence of large residuals. We also introduce the weight function of a robust kernel that
will be used in the rest of the paper,

o(IE)I) = v (IHED/ )] = o' (IE:(x)]/2). 2)

4 Half-quadratic lifting of a robust cost function

In this section, we present three ways of lifting a robust cost function using half-quadratic
lifting. We first briefly describe the M-HQ that was proposed in [14]. Then we present two
contributions, one based on A-HQ and another one combining both A-HQ and M-HQ.

4.1 Multiplicative Half-Quadratic Lifting

Multiplicative Half-Quadratic lifting [6, 14] of a robust kernel y consists in introducing an
M-LV and rewriting the robust kernel y as follows:

V(IR = min ") with YO = bulEEI 70, G)
where v; € [0,1] is an M-LV and 7 : [0, 1] — R is a convex and monotonically decreasing
“bias” function. Intuitively, an M-LV multiplies the squared norm of the residual of a data
point, thus if an M-LV reaches a value close to O (resp. 1), the corresponding data point is
considered to be an outlier (resp. inlier). Plugging Eq. 3 in Eq. 1, we obtain the M-HQ lifted
cost function

P (k) = L E VIR /70 = )

where we wrote YMHQ as non-linear least-squares instance. In order to jointly optimize
over the M-LVs and x using an NLLS solver, the M-LVs are reparameterized by v = w(u)
(which allows to avoid the constraint v > 0%), where w : R — Rg . Two sensible choices for
w are w(u) = u®> and w(u) = €. For instance, the numerically convenient choice w(u) = u?
and y(v) = 72(v — 1)? /4 (and therefore /y(w(u)) = t(u* — 1) /2) yields a smooth truncated

kernel [17],
wsr ([[fl]) = 772 (1 - [1 - Lsz}Z ) (5)
4 ey )

The non-differentiability of 1/y(v) at v =1 can be avoided e.g. by multiplication with
sgn(v — 1) (which leads to \/y(v) = 5(v—1) instead of \/¥(v) = £|v— 1] for the above-
mentioned kernel ysr).

In practice, one M-LV is introduced per data point but this only induces a moderate
increase in run-time (e.g. by leveraging the Schur complement [14]) compared to IRLS while
allowing the algorithm to escape poor local minima.

\F f . “4)

2For standard choices of ¥, ¥ can be continuously extended to the domain Rg (see e.g. [15]).
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4.2 Additive Half-Quadratic Lifting

In this section we propose a novel lifting-based optimization approach by leveraging the
additive variant of half-quadratic minimization [7]. It consists in introducing an A-LV and
rewriting y as follows:

vt = mmll/AHQ(vai) with w1, py) = 4[6(x) —pi[|*+ o (lpil), ©)

where p; € R? isan A-LV and p : R(J)r — Rg is generally a function similar to a robust kernel.
Intuitively, an A-LV is subtracted from the residual of a data point, thus if an A-LV reaches a
value close to the residual itself (resp. 0), the corresponding data point is considered to be an
outlier (resp. inlier). Since p has usually no closed-form expression for many robust kernels
v, but at the same time p is very close to v for & > 1, we replace y*"HQ by its relaxation,

PAHQ(x ) = 2| |6:(x) — pil|* + w(lIpil)- %

Observe that yA-HQ is nothing else than using a quadratic penalizer for the equality con-
straint p; = f;(x). In M-HQ one has non-convex interactions between lifting variables and
the (linearized) residuals, whereas in A-HQ these interactions are convex and the non-convex
aspects of the objective are entirely addressed by the lifting variables. This makes A-HQ an
interesting choice. Plugging Eq. 7 in Eq. 1, we obtain the A-HQ lifted cost function

PAHQ(x {p;}i) = Y6 (x) — pil >+ w(l|pil])- (8)

In order to minimize the A-HQ lifted cost function (Eq. 8) using an NLLS solver, we consider
the following quadratic majorizer for y(||p;||):

1Pi + Api||2 — ||| n

w(lIpi +Apil)) < o([[pil]) )

w(lIpilD)- ©

where o(-) is defined in Eq. 2. This majorizer arises in the derivation of the IRLS algorithm
as an instance of the majorize-minimize principle (e.g. [9]). Each iteration of an NLLS solver
(such as Gauss-Newton or Levenberg-Marquardt) then consists in:

1 - Applying a Gauss-Newton approximation of ||f;(x) —p;||?, i.e. linearizing the term f;(x) —
p; around X and P; (the current values of x and p;): f;(X+ Ax) — p; — Ap; ~ F; + J;,Ax — p; —
Ap;, where F; = f;(X) and J; is the Jacobian matrix of f;(X + Ax) around Ax = 0.

2 - Replacing y/(||p; + Ap;||) by its quadratic majorizer (Eq. 9).

3 - Solving the resulting (large) linear least squares problem (or a damped version of it by
adding a damping parameter A to the diagonal of the approximated Hessian matrix). We
now show how to efficiently solve this large linear system.

For simplicity, in the following we will focus on a two residual scenario but the results we
will derive can be trivially extended to multiple residuals. From Eq. 8 and Eq. 9, introducing
the notation @; = @(||p;]|)/ o, multiplying the cost by 2/a and linearizing the residuals as
described above, we obtain the following linear least squares problem:

PAH(Ax, Ap1,Ap2) = 1 [[Fi+ Jidx— i — Api||* + @By + Apil|” = [
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where (leaving zero entries blank)

ri—p J !
ok o .
o 2 P2 < -
r= __- J= — A=1[A
vV 01P1 V&I Ag;
V@p2 V&I
Thus we obtain the following (approximated) Hessian and gradient:
YO YRR e = . Y3 (Fi—pi)
= -5 (+a)1 Th= | (14 @)p -1
—Js (1+ @)1 (1+@)p2 — T2

Using the Schur complement and a damped approximated Hessian (J'J + AI), we obtain
for the update Ax,

d)l'+)b (!Jl+ll_‘ /'1.1_),
(Pre B P o) = - B O an

Backsubstitution for Ap; yields
Api = (1+ @ +A) " (JAX+F — (1 + @)pi)- (12)

Equations 11 and 12 allow to efficiently solve the linear system appearing in each iteration
of an NLLS solver since only a linear system of the size of J;' J; needs to be solved to obtain
Ax while a simple scalar inversion is required to compute Ap,. The system matrix appearing
in Eq. 11 has the same non-zero pattern as the non-lifted problem. Thus, the novel algorithm
we just derived meets our computational efficiency requirement. In the experiments, we will
evaluate if this version of half-quadratic lifting allows to satisfy our second requirement, i.e.
the ability to escape poor local minima.

Link with IRLS Since the A-HQ lifting approach we derived uses the same quadratic
majorizer as IRLS, we investigate in this paragraph how the two approaches are related.
Recall that @; = w;/a (with @; = o(||p;||)). Thus we read

o o/a w; 1 1 o

pry fr— = = . 13
1+ 1+o/a a+o; I+, 1+o/a oat+o (13

If we assume p; = T; and A = 0, then the update for x (Eq. 11) becomes

o T (VS
) J Ji | Ax=—) . J. T 14
(Zl 1+a—)l 1 l) X Zl 1-’-6)1 i rl ( )

1

Consequently, if o > 1, then the factor (1 + @;)~" in Eq. 14 is essentially constant and the
equation for Ax becomes the same as the IRLS update step. Further, in this setting we have
(from Eq. 12):
1 a w;
A'—iJA ;F;) = JiAx — r.
pl + ( X — lrl) +wl 1 X a+a)l

Again, if o > 1, then Ap; = J;Ax and p; + Ap; ~ t'; + J;Ax, which is the new residual. Con-
sequently, an iteration of the A-HQ lifting approach essentially reduces to an IRLS iteration
for p; =~ F;, A close to zero and o > 1.
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4.3 Double Lifting

In the previous section, we investigated one way of applying A-HQ to lift a robust cost
function. More precisely, we used a quadratic majorizer of y(||p;||) in order to be able
to leverage the computational efficiency of an NLLS solver. Instead of using a quadratic
majorizer, in this section, we propose to use the M-HQ method to lift y(||p;||) in Eq. 8 in
order to obtain an NLLS instance. As a consequence, we call this method “Double Lifting”
(DL). Using Eq. 8 and Eq. 3 we obtain the “doubly” lifted cost function:

WPL (x, {py i) = § Y16 %) — Bl + 3| Vw(a) pi|* + v/ Yo(w)) . (15)

We now show how to efficiently minimize that cost function using an NLLS solver. In the
following we will focus again on a single iteration of an NLLS solver and a two residual
scenario but the results we will derive can be trivially extended to multiple residuals. We
start by applying a Gauss-Newton approximation of each term in Eq. 15 around X, py, i1,
P2 and > (the current values of x, p1, 1, p2 and uy) and obtain the following linear least
squares problem:

YPL (AX, Apy, Auy, Apo, Aus) = ||i+ JA|%, (16)

with A = [AX; Apy; Auy; Apy; Auz | and

Valp —/al
va(t —pr) LAY —Jal
o(tr — P - W
) f\/(w*ip?ﬂ . VL 3y ;
= = = w —
' VW2 P2 J VAZE S o 2
2N :;lzﬁ
/2,)72 h M

V25

P =w (i),
¥ = y(W;) and ¥/ is the derivative of y(w(u;)) around the value w(i;). Thus we obtain the
following (approximated) Hessian and gradient:

F; = f;(X), J; is the Jacobian matrix of f;(X + Ax) around Ax = 0, w; = w(ii;), W/

aYy; 'y —ad] —ady
—alJ;  (o+w))I ﬂpl
I3 Tpl Uy GRS
—aJy (OH—Wz) w—2p2
Tpl Sy (RS
3= (oY J; { (B —Pi)sa(pr — 1) +Wipi; _/LH 20 sa(Po —Fa) + wapo; W) g, 1B2ll+27, HVZ}

In order to be able to apply the Schur complement and solve the previous linear system
efficiently, we will need the matrix-inverse of the following submatrix of JTI4+A1,

o+ +A)T ip; I b
A= <( wv{v: T ) () 22 g 7/ > = (;l T bll,)l) : (17)
2P o Ipill” + +A iP; G
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It can be verified that

ici—b7 |[pil* b}
FETR N E s u A T :(34' gf) (18)
Y aici— b7l —bip/ ai g hi)’

where B; is the upper left d x d block of Afl and g; is the d-dimensional column vector
at the top right of A;l. Using the Schur complement and a damped approximated Hessian
3 TI4+2 I), we obtain for the update Ax,

(Zi JiT(I - O‘Bi)Ji“r)uI) AX =

A (1"; — Pi+Bi(0(pi — F) +wip;) +w} (ll%u + 74) g") - 19

Backsubstitution for Ap; and u; yields

Ap; _1 [a(pi—TF;) +wip; — OCJiAX>
= —A; _ _ _ . 20
( ) ( % (L1912 + 7) ¢

Equations 19 and 20 allow to efficiently solve the linear system appearing in each iteration
of an NLLS solver. Thus our novel DL approach also fulfills our computational efficiency
requirement. The ability of DL to escape poor local minima will be evaluated experimentally
and compared against both M-HQ and A-HQ in section 5.

5 Experiments

Our straightforward C++ implementation of all algorithms is based on a sparse Levenberg-
Marquardt solver leveraging column reordering and sparse LDL' decomposition. We also
use the explicit Schur complement as described in the previous sections to handle the half-
quadratic based approaches. Using a direct solver puts limits on the maximum bundle ad-
justment problem size. The parameter « is set to 10 in all experiments, since for this value
of a the bias function p in the additive HQ formulation is already close to y. In terms of
run-time the IRLS method is the fastest (per LM iteration), followed by the HQ variants. The
relative run-time indices are IRLS: 1, M-HQ: 1.6, A-HQ: 1.45, DL: 1.72.

Synthetic toy data: We follow [15] in the setup of the synthetic robust mean instances
in order to determine the behavior of the methods w.r.t. random initial values. The robust
objective is given by

N
min )" (v 1), @D
i=1

where v is the Welsch kernel with parameter 1/2. The N = 1000 d-dimensional data points
consist of uniformly sampled in [—20,20]¢ outliers and inliers sampled from N (i, I xq).
Fig. 1 depicts the average objective values (and the respective standard deviation over 100
runs) reached by the different methods for varying choices of inlier ratios and d € {2,3}.
Double lifting significantly outperforms multiplicative HQ in this scenario, and additive HQ
is superior to M-HQ in most cases.
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Figure 1: Synthetic results in 2D (top) and 3D (bottom).

Bundle adjustment data: Bundle adjustment is the prominent application of large scale
robust cost minimization in 3D computer vision. We selected 10 up-to-medium sized prob-
lem instances from the “bundle adjustment in the large collection” [1].* The robust objective
is given by

PR (R {ti} (X 1) = 1 w1 (RXG + ) — i) (22)

where q;; € IR? is the observed image observation of the j-th 3D point X j € IR? point in the i-
th image (which has associated parameters R; € SO(3) and t; € R?). 7(X) = (X1/X3,X2/X3)"
is the projection function of a pinhole camera model. q;; is measured on the normalized
image plane, i.e. the original pixel coordinates are premultiplied by the (provided) inverse
calibration matrix. We use both the Welsch and the smooth truncated kernel with parameter
1/2. This parameter value renders the problem instances sufficiently difficult, as the initial
inlier ratio of image observations varies between 14% and 50% (depending on the dataset).
The inlier ratios obtained after robust cost minimization cluster around 60% for the best ob-
tained local minima. We limit the number of LM iterations to at most 100 to avoid excessive
run-times.

In order to separate between local minima induced by the non-linear bundle objective
and the ones induced by the robustified cost function we first consider a linearized version of
bundle adjustment, i.e. the residuals f;; = 7(R;X; +t;) — q;; are replaced by their linearized
versions w.r.t. the provided initial values. The non-robust objective is therefore convex (a lin-
ear least-squares instance), and the performance differences depicted in Fig. 2 indicate how
well each method escapes poor local minima. In this setting A-HQ generally outperforms
IRLS by a margin (and is competitive with M-HQ and double lifting for the Welsch kernel),
and double lifting is slightly ahead of M-HQ.

Fig. 3 illustrates the reached objectives by the different methods for non-linear metric
bundle adjustment. Due to the non-linearity already present in the non-robust objective,
the results are more diverse than the ones in Fig. 2. In particular, dataset 2 is leading to
slow convergence for both A-HQ and DL methods. Hence, a better method for robust cost
minimization is no guarantee for reaching a better minimum under all circumstances.

3The datasets are in particular 1adybug-318, ladybug-598, trafalgar—-138, trafalgar-257,
dubrovnik-150, dubrovnik—-356, venice—-245, venice—-427, final-93 and final-394.
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Figure 2: Results for linearized BA using the Welsch (top) and smooth truncated kernel
(bottom).

We also verified if allowing more LM iterations (our choice is 500) leads to a reduction
in the performance gaps between the methods for metric BA. This appears not to be the case,
and therefore the different methods reach actually different basins of convergence.

6 Conclusion

In this work we investigated the benefits of the additive variant of half-quadratic lifting (A-
HQ) for robust cost minimization and compared its performances against multiplicative half-
quadratic lifting (M-HQ). We also proposed a “double lifting” approach (DL) that combines
both additive and multiplicative lifting. On synthetic data, we obtained a clear ordering of the
ability of the different methods to escape bad local minima: DL outperformed both A-HQ
and M-HQ while M-HQ fell behind A-HQ. On real bundle adjustment datasets, we observed
different behaviors: A-HQ fell behind both by M-HQ and DL, while DL was comparable
to and sometimes slightly outperformed M-HQ. To conclude, we believe that our novel DL
approach is an interesting alternative to M-HQ with a moderate 10% increase in run-time in
exchange for a stronger ability to escape bad local minima.
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Figure 3: Results for metric BA using the Welsch (top) and smooth truncated kernel (bot-
tom).
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