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1 Proof of Prop. 3

1.1 Lifting of the Welsch kernel w.r.t. a scaled Welsch kernel

In the following we use Egs. 10 and 11 from the main text and find the inverse function of «/(¢). Recall that the
Welsch kernel is given by

2

dwel,r () = % (1 - e‘xz/Tz) and Wwel, - (x) = e~/ €))
If it is lifted against a scaled version of itself, we obtain
wwel r(t/A) (1/X% —1/p?) t? ur— X2 2
t = - = —_— 5 == a5 o ' & . 2
We can invert the mapping «(t), which yields
_ —logw
a N w) = Arp P TE 3)

Note that logw < 0 and 2 — A\? > 0, since w € (0, 1] and 2 > X by assumption. By observing that for v # 0

i2 _ A%
e T2 = a(t) v2(p2—22)

we can simplify ¢(z/v) (with v € {\, u}) to

d(t/N) = %2 (1 - 67%) = % (1 _ a(t)“2/(”2—/\2)>

o(t/p) = %2 (1 — eufﬂ) = T (1 — a(t))‘2/(”2—)‘2)) ]
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Consequently v(w) (cf. Eq. 12 in the main text) simplifies to:

2 2 2
y(w) = % <)\2 <1 - wu2p—*2> — pPw (1 — wuzk—ﬂ))
(12 2 A 2
=5 )\—i—(u —)\)w#** — prw | . @)

We assume ;o = s for s > 1, and therefore Eq. 4 further simplifies to

AZTQ

Ysx (W) = 5 (1+w((32—1)ws2%1—52)), 3)

which shows item 1 of the proposition.
It is interesting to analyse the robust kernel induced by 7x: the minimizer w*(x) is given by solving
miny,efo,1] wr?/2 + Ysx (w)

xz s2—1
w*(z) = [1 - 32)\272} (6)
+
and the induced robust kernel is
2272 2 1%
Qbsx;m-(x) = 9 1-— {1 - 82/\27_2]+ . @)

If s? = 2, we identify ¢ s, (-) with ¢st(; V2A7), and ¢ sz, (-) (i.e. s? = 3) coincides With ¢rucey (- V3AT). A
natural choice for s is s = 2, which leads to consecutive doubling of A7.
The choice i = v/2) is particularly convenient, since in this case y(w) reduces to

2A2
Y(w) = —(w = 1)*. ®)

The expression above can be identified with ’YSTQ('UJ; \/57)\), hence a Welsch kernel with scale \/ELT can be
“boosted” to scale 7 by iterating with the smooth truncated kernel.

A natural more aggressive scheme to increase the shape parameter 7 is given by a doubling approach, p = 2,
in Eq. 4. In this setting we obtain

T2A2

2

(14w (3w —4)). ©

Yox (w) =

together with the corresponding robust kernel ¢o

2272 2 4
o (2;7) = 2T (1 - {1 - 4;72L> . (10)

To our knowledge this kernel is not among the standard kernels known in the literature, but its graph is empirically
very close t0 Grukey (; 1/3/4).

1.2 Lifting of the smooth truncated kernel w.r.t. a scaled smooth truncated kernel

If we lift the smooth truncated kernel,

7 2 2/ 2
bs1,7 () = 7 (1= 1- ;L wst,r () = [1 —2?/77] _, (1)
w.r.t. a scaled version of itself, we obtain
At 2 2
a(t) = st T (12)

wst(t/p) T2 —12/p?



for t € [—, 7], and therefore

1 _
a(w) =T, /1—711)7,9' (13)

Plugging this expression into Eq. 12 in the main text yields a closed-form expression for v(w),

272 (w —1)?

) (14)

’YST,T,S(w) =
which completes the proof of item 2.

1.3 Lifting of the Geman-McClure kernel w.r.t. a scaled Geman-McClure kernel

In contrast to items 1 and 2 above we prove the claimed relation directly in the following. Let us define the
following function

2 2 1242 2
f(@,1) = P¢cem,r (z) + 32 (1-1)?%= 555217_’_7_2 + 32 (1-1)° (15)
i
Minimizing f (x,!) w.r.t. [ we obtain:
of (z,1) Tix?
0= 5 :lx21+ = +72(1-1) (16)
Consequently
2
I* = argmin f (z,1) = —552— 17)
1 Tlﬂ',’ 7_2
x2+73 2
From this result we get
2 2
" T2 1 7222 T2 T2
fe =\ —| 3@ t2 | 7o 5 ! (18)
w21+7'f + 7_2 * Tl 3U21+‘rf + 7_2
However, we also have the following identity:
2 2 2 2 2 2 2 2 2 2
1 1 1
( . 2> y+T2( 7221> —< > 2> y+72(y2> =30 )
Y+ 75 2 2 \y+rm; y+ 75 2 2 \y+rm; 2y 415
Thus, defining y = %, we read
1
1252 o TS 72
R =10 1 (7242
Flaty= gt P an (@) 0)
21 7 + Ty $2 + 21 22 P43
o (7'1 +'r2)
Finally, defining 7 and s such that 7 = —2Z2— and 7| = s7, we obtain 7, = \/% which shows that
TLTTS S
o, §272 )
¢Gem,‘r (‘T) = mllnl ¢Gem,sr (.’L’) + m (l - 1) 21

2 Additional experimental results

In Figs. 1-3 we depict the final objectives reached for bundle adjustment problems (the same instances as in
the main text). In order to assess the influence of non-linearities and local minima of the original, non-robust
bundle objective, we illustrate results for linearized residuals in Fig. 1, and increase the non-linearity of the
underlying problem in Fig. 2 (metric bundle adjustment) and Fig. 3 (additionally optimize over camera calibration
parameters).
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Figure 3: Full bundle adjustment (including focal length and lens distortion parameters).
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Figure 1: Linearized bundle objective
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Figure 2: Metric bundle adjustment
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