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1) Introduction
Problem statement
e Minimize a cost function involving robust data terms
e Example application: Robust bundle adjustment using the Welsch kernel
min_ Y ¢((m(RiX; + t:)) — Hij) where dwe - () = ~ (1-¢ )
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Challenges

e large number of local minima

e large number of parameters to estimate

How to obtain an efficient algorithm able to escape bad local minima?

2) One solution: Half-Quadratic Lifting [1]

Use a quadratic basis kernel to lift ¢(x):
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{w% + v(w)} =

Welsch kernel: ~(w) = é (1 + wlogw — w).

min

Jmin min ¢(x,w)

we|[0,1]

2

18] ‘ S _quell,l( ) |
_5132/2 |

1.6}

14}

1.2

1,

0.8

0.6

0.4

0.2 |-

0 \ \ \ \ \ 4 \ \ \ \ \
-3 -25 -2 -—-15 -1 —-05 O 0.5 1 1.5 2 2.5 3

Target kernel ¢wer 1 () and basis kernel % Half-quadratic lifting [1] of ¢wel.1(x)

Half-Quadratic lifting allows utilization of efficient non-linear least-squares solvers.
Can we keep this advantage while lifting ¢(2) more gradually?

3) Contributions

e Generalization of the half-quadratic lifting construction to non-quadratic
basis kernels

e Novel technique, called itrerated lifting, that allows to 1teratively lift a robust
target kernel using a less robust kernel as basis kernel

e Integrate into efficient NLSQ Levenberg-Marquardt optimizer

e Generally reaches better local minima than IRLS or halt-quadratic lifting

6) Results

Synthetic data (random starting points)
We robustly fit a mean vector 6 to synthetically generated 3-dimensional point data
d = (dy,...,d1000) at a given inlier ratio:
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Average objective (and standard deviation) reached by the different methods for
robustly fitting the mean to synthetically generated data points.
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4) Lifting using general basis kernels

Use a non-quadratic basis kernel () to lift ¢(z):

Jin P(x, w)

min
we(0,1]

o(z) = min {wd(z)+y(w)} <

Lifting ¢(x) w.r.t. a scaled version of itself is very convenient.
We have for the Welsch kernel:

QbWel,q-(Zl?) = I WOwel,sr ('CE) T /YWel,T,S(w)
wel0,1]
2
VWeLT,s(w) = % (1 + W ((82 — 1) w821—1 — 52 )

T 2
,VWel,T,\/ﬁ(w) — 7 (w o 1) /YWCI,T,OO(w) — 9 (1 + wlogw o w)

1.8] _ngel,l(x) .
16| _quel,\/ﬁ(x) |

1,

0.8

0.6

0.4

0.2 |-

0 \ \ \ \ \ | \ \ \ \ \
-3 -25 -2 -15 -1 —-05 O 0.5 1 1.5 2 2.5 3

dwer,1(x) lifted w.r.t. a non-quadratic
basis kernel ¢y, ,z()

Target kernel ¢wer 1(x) and basis kernel
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How to combine this result with efficient non-linear least-squares solvers?

o) Iterated Lifting

Idea: expand ¢(z) by its lifted representation X times.

Use gg( ) = % in the final expansion to allow efficient NLSQ solvers.

Example: expand the Welsch kernel 3 times (K = 3, 5 = V2, w = (w1, w2, w3)):
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Implementation using Levenberg-Marquardt

e Parametrize wy = ui > 0withur € R
e Initialize all weights wq ..., wg to 1 (all data points are considered inliers)

o At LM iteration 7" > 0 optimize over 6 U {w1, . .., Wrmod (K+1)}

Bundle adjustment data

We selected two problem instances from each of the 5 models in the publicly
available bundle adjustment data set [2] and used the given camera parameters
and 3D structure as initializer.
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Objective values reached by the different methods for metric bundle adjustment
and full bundle adjustment additionally optimizing over focal length and lens
distortion parameters.

[1] Christopher Zach. Robust bundle adjustment revisited. ECCV 2014.

[2] Sameer Agarwal, Noah Snavely, Steven M Seitz, and Richard Szeliski. Bundle adjustment in the large. ECCV 2010.



