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Abstract

Optimization of latent model parameters using robust formulations usually creates
a large number of local minima due to the quasi-convex shape of the underlying robust
kernel. Lifting the robust kernel, i.e. embedding the problem into a higher-dimensional
space, leads to significantly better local minima in a range of 3D computer vision prob-
lems (e.g. [10, 11, 12]). In this work we propose to iterate this lifting construction to
obtain a more gradual lifting scheme for a given target kernel. Thus, a robust kernel is
not directly lifted against the (non-robust) quadratic kernel, but initially against a differ-
ent, less robust kernel. This process is iterated until the quadratic kernel is reached to al-
low utilization of efficient non-linear least-squares solvers. We demonstrate in synthetic
and real problem instances that iterated lifting generally reaches better local minima than
IRLS and standard half-quadratic lifting.

1 Introduction
Many computer vision algorithms seek to estimate parameters from data containing outliers.
Most of the time, the parameters are obtained by minimizing a cost function involving ro-
bust data terms that are able to mitigate the influence of outliers. In order to significantly
reduce the influence of outliers it is common to use quasi-convex kernels such as Tukey’s
biweight or Geman-McClure (see Table 1). However the sum of theses quasi-convex kernels
create (usually a large number of) local minima that may be harmful for the optimization
algorithm. Consequently, it is important to use an optimization algorithm with the ability to
escape bad local minima. One way to achieve this is by “half-quadratic lifting” the robust
kernel, which consists in lifting the robust kernel w.r.t. a quadratic basis kernel, to obtain
a higher-dimensional problem and to perform joint optimization w.r.t. both the parameters
of interest and the lifting variables [11]. In doing so, the optimization algorithm is able to
avoid early “classification” of data points as outliers and thus escapes bad local minima.
In this paper, we propose to go beyond half-quadratic lifting by proposing iterated lifting,
which essentially consists in lifting a robust kernel with more than one lifting variable and
performing optimization in this even higher dimensional space (see Figure 1).

Related work Lifting kernels, i.e the trick of expressing a robust kernel as the minimum
of a family of quadratic kernels, dates back to the 1980s. It has gone through different names
since its inception such as line processes [2, 5], half-quadratic minimization [4, 8] and more
recently switching constraints [10]. The resulting lifted cost function was often minimized
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Figure 1: Comparison between half-quadratic lifting [11] and iterated lifting of the Welsch
kernel (see Table 1). The iterated lifting technique proposed in this paper provides a gradual
lifting scheme for a given target kernel as opposed to the standard Half-quadratic lifting
technique. To do so, our approach lifts a target robust kernel w.r.t. a slightly less robust
kernel. This process is iterated until the quadratic kernel is reached to allow utilization of
efficient non-linear least-squares solvers.

using optimization by alternation, e.g Iterated Reweighted Least Squares (IRLS) [6]. How-
ever, this algorithm easily gets trapped into bad local minima.

It was only recently shown that optimizing in the higher dimensional parameter space
of the lifted cost function directly, i.e jointly optimizing over the variables of interest as
well as the lifting variables, could lead to better local minima [11]. This approach has been
successfully employed in several applications since, e.g bundle adjustment [11], non-rigid
reconstruction [12], monocular visual odometry [9], pose-graph optimization [10], scene
reconstruction from RGB-D videos [3], multiview stereo [7].

Contributions Our contributions are as follows:

1. We generalize the half-quadratic lifting construction to non-quadratic basis kernels
and derive a technique to obtain the generalized lifted representation of a robust kernel.

2. We propose a novel technique, called iterated lifting, that allows to progressively lift a
target robust kernel using a less robust kernel as basis kernel in an iterative manner.

3. We show that iteratively lifting a robust kernel w.r.t. a scaled version of itself is very
convenient for at least three kernels of interest and demonstrate the effectiveness of
our approach both on synthetic and real data.

Outline The rest of the paper is organized as follows: Section 2 introduces some useful
definitions and briefly reviews half-quadratic lifting. A generalized lifting formulation is
presented in Section 3 which allows us to describe our iterated lifting framework in Section 4.
In Section 5, our iterated lifting framework is evaluated experimentally. Finally, conclusions
and future research directions are provided in Section 6.
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2 Preliminaries
This section introduces some useful definitions and reviews the basis of half-quadratic lift-
ing, which converts a difficult non-linear function into a higher-dimensional optimization
problem that can be advantageous to solve. First we provide our definition of what we un-
derstand by a robust kernel:

Definition 1. A symmetric and sufficiently smooth function φ : R→ R+
0 is said to be a

robust kernel, if

1. The mapping z 7→ φ(
√

2z) is monotonically increasing and concave in R+
0 .

2. φ(0) = 0, limx→0 φ ′(x)/x = 1 and φ ′′(0) = 1,

The function ω(x) def
= φ ′(x)/x is called the weight function ω(x) of φ .

Note that we slightly deviate from the definition e.g. given in [4] by not limiting ourselves
to redescending M-estimators and by normalizing φ differently. The first condition in Def. 1
is somewhat abstract, and at this point we aim to provide some intuition, since we will
revisit and generalize this condition in Section 3.1. The mapping ρ : R+

0 → R+
0 with ρ(z) =

φ(
√

2z) first converts the non-robust residual “energy” z = z(x) = x2/2 to the corresponding
residual magnitude x(z) =

√
2z and then applies the robust kernel φ on residual x. Thus, ρ

is a mapping between residual “energies”, and the monotonicity and concavity of ρ means
that this conversion between energies is diminishing for larger values (somewhat similar to
monotone submodular functions).

Next we introduce a way to rewrite a robust kernel as a higher-dimensional problem:

Definition 2. Let φ be a robust kernel. If φ can be written as

φ(x) = min
w∈[0,1]

{
w

x2

2
+ γ(w)

}
def
= min

w∈[0,1]
φ̃(x,w) (1)

for all x, then we call φ̃ its lifted representation w.r.t. the quadratic basis kernel x 7→ x2/2.

In many cases γ can be continuously extended from [0,1] to R+
0 (see Table 1), which is

beneficial in numerical implementations since w can be reparametrized via w = u2 or w =
exp(u) instead of w = σ(u) for a sigmoid function σ .

Finally we introduce a mapping ζ : R+
0 → R+

0 with ζ (x) =
√

2φ(x) for a given robust
kernel φ . ζ will be of interest in Section 4, and we state a simple fact:

Lemma 1. For a robust kernel φ the induced mapping ζ is a contraction, i.e. ‖ζ (x)‖ ≤ ‖x‖.

The lemma follows directly from φ(x)≤ x2/2 since φ is a robust kernel.

3 Lifting using general basis kernels

3.1 Generalized lifting formulation
A natural question is whether we can replace the quadratic basis kernel x 7→ x2/2 in Eq. 1
by another basis kernel to obtain a generalized lifting formulation. The answer is positive,
and will be the foundation of our iterated lifting construction.
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Name φ(x) ω(x) γ(w) dom(γ)

Quadratic x2/2 1 0 {1}
`1-`2 τ

√
x2 + τ2− τ2 τ√

x2+τ2
τ2

2 (w+1/w)− τ2 R+
0

Cauchy τ2

2 log
(
1+ x2/τ2

)
τ2

τ2+x2
τ2

2 (w− logw−1) R+
0

Huber

{
x2/2 if |x| ≤ τ

τ|x|− τ2/2 if |x| ≥ τ

{
1 |x| ≤ τ

τ/|x| |x| ≥ τ

τ2

2 (1/w−1) [0,1]

Geman-McClure τ2x2

2(x2+τ2)
τ4

(x2+τ2)2
τ2

2 (
√

w−1)2 R+
0

Welsch τ2

2

(
1− e−x2/τ2

)
e−x2/τ2 τ2

2 (1+w logw−w) R+
0

Truncated quadratic min{τ,x}2/2

{
1 |x| ≤ τ

0 |x| ≥ τ

τ2

2 (1−w) [0,1]

Tukey’s biweight τ2

6

(
1−
[
1− x2

τ2

]3
+

) [
1− x2/τ2

]2
+

τ2

6 (1−√w)2(1+2
√

w) R+
0

Smooth truncated (ST) τ2

4

(
1−
[
1− x2

τ2

]2
+

) [
1− x2/τ2

]
+

τ2

4 (w−1)2 R+
0

Table 1: Kernels (see Definition 1) and their related functions. All kernels are normalized
such that φ ′′(0) = 1.

Proposition 1. Let φ and φ̂ : R→ R+
0 be robust kernels with φ̂ invertible in R+

0 . φ ◦ φ̂−1 is
concave in R+

0 if and only if φ(x) = minw wφ̂(x)+ γ(w) for some (convex) function γ .

Proof. We have the following property:

φ(x) = min
w

wφ̂(x)+ γ(w) =−max
w

{
−wφ̂(x)− γ(w)

}
=−γ

∗(−φ̂(x)). (2)

where γ∗(·) is the convex conjugate of γ(·). As convex conjugate the function γ∗ is convex
in the argument z(x) =−φ̂(x) (but not necessarily in x itself). This means that the hypograph
of the mapping−φ̂(x) 7→ φ(x) (with x≥ 0) is convex. After changing coordinates z =−φ̂(x)
we obtain that the mapping z 7→ φ(φ̂−1(−z)) is concave, which is equivalent to the concavity
of the mapping z 7→ φ(φ̂−1(z)).

If γ is chosen to be non-convex, then replacing γ by its bi-conjugate γ∗∗ (which is convex
by construction) in Eq. 2 does not alter the induced kernel φ (since γ∗∗∗ = γ∗ =−φ ).

We consider the relation (also making use of z =−φ̂(x)),

−φ(φ̂−1(−z)) = γ
∗(z) = max

w
{wz− γ(w)} .

The properties of convex conjugates imply that the value of w attaining the maximum,
w∗(z) = argmaxw {wz− γ(w)}, is always a (sub)gradient of γ∗ at z. Assuming differen-
tiability of γ∗ (or φ ) we therefore obtain

w∗(z) =
d
dz

γ
∗(z) =− d

dz
φ(φ̂−1(−z)) =

d
dz

φ(φ̂−1(z)). (3)

As shown in the next result there is a strong connection between w∗ and the weight functions
ω and ω̂ of the corresponding kernel φ and φ̂ , respectively:

Proposition 2. Let φ and φ̂ be robust kernels. If φ ◦ φ̂−1 is concave and non-decreasing in
R+

0 , then the following holds:

1. limz→0
d
dz φ(φ̂−1(z)) = 1.
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2. φ is below φ̂ , i.e. φ(x)≤ φ̂(x).

3. The relative weight function ω/ω̂ is non-negative and bounded by 1, and it is mono-
tonically decreasing in R+.

Proof. First observe that (with x = φ̂−1(z))

d
dz

φ(φ̂−1(z)) = φ
′(φ̂−1(z))

d
dz

φ̂
−1(z) =

φ ′(x)
φ̂ ′(x)

=
ω(x)
ω̂(x)

d2

dz2 φ(φ̂−1(z)) =
φ ′′(x)φ̂ ′(x)−φ ′(x)φ̂ ′′(x)

(φ̂ ′(x))2
. (4)

Hence, d
dz φ(φ̂−1(z))|z=0 =

ω(0)
ω̂(0) = 1, which shows the first claim. The concavity of φ ◦ φ̂−1

implies that

φ(φ̂−1(z))≤
=0︷ ︸︸ ︷

φ(φ̂−1(0))+z · d
dz

φ(φ̂−1(z))|z=0 = z.

Choosing z = φ̂(x) yields φ(x)≤ φ̂(x) as claimed. Finally, by recalling Eq. 4 we read

d
dx

ω(x)
ω̂(x)

=
φ ′′(x)φ̂ ′(x)−φ ′(x)φ̂ ′′(x)

(φ̂ ′(x))2
=

d2

dz2 φ(φ̂−1(z)),

which is non-positive by the concavity assumption. Thus, ω(x)/ω̂(x) is monotonically de-
creasing in R+.

Since w∗(z) = d
dz φ(φ̂−1(z))∈ [0,1] (recall Eq. 3) we can add the constraint w∈ [0,1] in Eq. 2

w.l.o.g. This allows us to generalize the definition of lifted representations for robust kernels
given earlier in Def. 2:

Definition 3. Let φ and φ̂ : R→ R+
0 be robust kernels such that φ̂ is invertible in R+

0 and
φ ◦ φ̂−1 is concave and non-decreasing in R+

0 . Hence, φ(x) can be written as

φ(x) = min
w∈[0,1]

{
wφ̂(x)+ γ(x)

}
, (5)

and we call the expression wφ̂(x)+ γ(x) the lifted representation of a robust kernel φ w.r.t.
the basis kernel φ̂ .

3.2 Obtaining Lifted Representations
Now that we know when φ can be lifted w.r.t. φ̂ , the next question is how to obtain the
expression of γ(w). Let a pair of functions φ and φ̂ be given that satisfy the requirements in
Prop. 2. A lifted representation of φ w.r.t. φ̂ can be obtained by using the ansatz

φ(x) = min
t

α(t)φ̂(x)+β (t), (6)

and using the fact that function value and gradient need to match at x = t, i.e.

φ(x)|x=t = α(t)φ̂(x)|x=t +β (t) = α(t)φ̂(t)+β (t)

φ
′(x)|x=t = α(t)φ̂ ′(x)|x=t = α(t)φ̂ ′(t). (7)
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We immediately obtain

α(t) =
φ ′(t)
φ̂ ′(t)

=
ω(t)
ω̂(t)

β (t) = φ(t)−α(t)φ̂(t) = φ(t)− ω(t)
ω̂(t)

φ̂(t). (8)

By our assumptions we have α(t) ∈ [0,1] and β (t)≥ 0 for all t. If α(·) is invertible in [0,1],
then reparametrizing t = α−1(w) with w ∈ [0,1] yields

γ(w) = φ(α−1(w))− φ ′(α−1(w))
φ̂ ′(α−1(w))

φ̂(α−1(w)). (9)

Different reparametrizations of t are possible and could be beneficial for optimization, but
in this work we use this canonical form of lifting. We found that this construction is more
general and less error-prone than the criterion given in [11].

3.3 Lifting w.r.t. Scaled Robust Kernels
A natural way to lift a robust kernel φ is to use a scaled version of φ itself as basis kernel φ̂ .
Let φ be a robust kernel. For a scalar µ > 0 we define the scaled kernel

φ(x; µ) = µ
2
φ(x/µ) (10)

(note that φ ′′(0) = 1). We immediately obtain φ ′(x; µ) = µφ ′(x/µ) and therefore

ω(x; µ) =
µφ ′(x/µ)

x
=

φ ′(x/µ)

x/µ
= ω(x/µ). (11)

Below we will address the general case of lifting φ(·;λ ) w.r.t. φ(·; µ) for a λ ∈ (0,µ). Fol-
lowing the construction in Sec. 3.2 we read

α(t) =
ω(t;λ )

ω(t; µ)
=

ω(t/λ )

ω(t/µ)
(12)

β (t) = φ(t;λ )−α(t)φ(t; µ) = λ
2
φ(t/λ )−µ

2 ω(t/λ )

ω(t/µ)
φ(t/µ). (13)

Note that α(t) ∈ [0,1] by the properties of ω . If we are able to invert w = α(t) in [0,1], then
γ(w) = β (α−1(w)) is given by

γ(w) = λ
2
φ(α−1(w)/λ )−µ

2wφ

(
α−1(w)

µ

)
, (14)

and the lifted representation of φ(·;λ ) w.r.t. φ(·; µ) consequently reads as µ2wφ(x/µ) +
γ(w). As it is shown in the following proposition, several robust kernels, among them the
Welsch kernel φWel,τ(·), the smooth truncated kernel φST,τ(·) and the Geman-McClure kernel
φGem,τ(·) (see Table 1), turn out to be very convenient for lifting w.r.t. a scaled version of
themselves.

Proposition 3. Let s≥ 1, then the following identities hold:

1. φWel,τ(x) = minw∈[0,1] wφWel,sτ(x)+ γWel,τ,s(w) with

γWel,τ,s(w) = τ2

2

(
1+w

((
s2−1

)
w

1
s2−1 − s2

))
,

Citation
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2. φST,τ(x) = minw∈[0,1] wφST,sτ(x)+ γST,τ,s(w) with γST,τ,s(w) =
s2τ2(w−1)2

4(s2−w) ,

3. φGem,τ(x) = minw∈[0,1] wφGem,sτ(x)+ γGem,τ,s(w) with γGem,τ,s(w) =
s2τ2(

√
w−1)2

2(s2−1) .

The proof is given in the supplementary material. Let us note that for each of these three
kernels, lims→∞ γ·,τ,s(w) corresponds to the respective function γ(w) in the half-quadratic
lifting case (see Table 1). A graphical illustration of that proposition is given in Figure 1.

In the next section, we will leverage these propositions to show that any of these kernels
can be optimized at a desired shape parameter τ by an iterated lifted representation using
successively larger shape parameters.

4 Iterated Lifting
The half-quadratic lifting technique uses a quadratic kernel as basis kernel to represent a
robust cost (see Eq. 1). Quadratic kernels are convenient because they enable efficient block-
coordinate methods [2] and Gauss-Newton approaches [11]. However, as we showed in
Figure 1, it may be beneficial to use a different (non-quadratic) basis kernel. Assume we
have a robust kernel φ2 that has a lifted representation w.r.t. another robust kernel φ1. Unless
φ1 is a quadratic kernel, minimizing φ2 by lifting using φ1 as basis kernel does usually not
allow to leverage an efficient optimization algorithm. Hence it is sensible to replace φ1
by its “half-quadratic lifted” representation. This scheme can be iterated, for instance by
considering φ2 as basis kernel to lift a kernel φ3 which will produce a gradual lifting of φ3
and allow utilization of efficient non-linear least squares solvers. In the following we make
this construction more precise and analyze its properties.

Definition 4. Let functions (γk)k∈1:K with γk : [0,1]→ R+
0 be given. We introduce the map-

pings

φ̃
(K)(w;x) =

(
K

∏
k=1

wk

)
x2

2
+

K

∑
k=1

(
K

∏
l=k+1

wl

)
γk(wk) (15)

φ
(K)(x) = min

w∈[0,1]K
φ̃
(K)(w;x). (16)

We call φ̃ (K) the K-lifted representation of the induced robust kernel φ (K). φ (K) depends on
γk for all k, but for brevity we omit this dependence, and the choice of {γk} should be clear
from the context.

Let φk : x 7→ minw∈[0,1] wx2/2+ γk(w) be a robust kernel. From Eq. 16, if we consider a
2-lifted representation, we obtain

φ
(2)(x) = min

w2∈[0,1]
w2 min

w1∈[0,1]

{
w1

x2

2
+ γ1(w1)

}
+ γ2(w2) (17)

= min
w2∈[0,1]

w2φ1(x)+ γ2(w2) = φ2

(√
2φ1(x)

)
= (φ2 ◦ζ1)(x) =

1
2
(
(ζ2 ◦ζ1)(x)

)2

where we used the contraction ζ associated with a robust kernel φ (see Lemma 1). We can
generalize Eq. 17 to arbitrary K by induction over K and arrive at the following result for
K-lifted representations,

Citation
Citation
{Black and Rangarajan} 1996

Citation
Citation
{Zach} 2014



8 ZACH, BOURMAUD: ITERATED LIFTING FOR ROBUST COST OPTIMIZATION

Proposition 4. An explicit expression for φ (K) is given by

φ
(K)(x) = (φK ◦ζK−1 ◦ . . .◦ζ1)(x) =

1
2
(
(ζK ◦ . . .◦ζ1)(x)

)2
. (18)

Further, φ (K)(x) is more robust than φ (K−1)(x) = φK−1◦ζK−2◦ . . .◦ζ1 in the following sense:
for all x ∈ R it holds that φ (K)(x)≤ φ (K−1)(x) and ω(K)(x)≤ ω(K−1)(x).

Proof. Eq. 18 can be seen by repeating the steps leading to Eq. 17, i.e. recursively applying
φk(·) = minw′ w′x2/2+ γk(w′) for k = 1, . . . ,K on Eq. 16, and using the definition of ζk. We
also deduce that φ (K)(x)≤ φ (K−1)(x) by applying Lemma 1. The final claim can be seen as
follows: we recursively define x̄0 = x and x̄k = ζk(x̄k−1). Then by the chain rule the weight
function ω(K) can be written as

ω
(K)(x) =

K

∏
k=1

φ ′k(x̄k−1)

x̄k−1
=

K

∏
k=1

ωk(x̄k). (19)

Hence we obtain ω(K)(x) = ωK(x̄K−1)ω(K−1)(x)≤ ω(K−1)(x) since ωK(x̄K−1) ∈ [0,1].

The explicit shape of the weight function in Eq. 19 allows to analyze the limit function φ (K)

for K→ ∞ easily:

Proposition 5. Let a robust kernel φ be given, and let τ
def
= max{x : ω(x) = 1} be its radius

of unconditional inliers. Then

φ
(∞) = lim

K→∞
φ ◦ζ ◦ · · · ◦ζ︸ ︷︷ ︸

K−1 times

is given by φ
(∞)(x) =

1
2
(min{|x|,τ})2 . (20)

We can summarize the findings above as follows:

• A robust kernel can be interpreted as applying a non-linear contraction on the original
residual, and iterated lifting amounts to chaining contractions.

• Consequently, iterating the lifting step to obtain a K-lifted representation leads to suc-
cessively more robust kernels.

We finally illustrate our results of how to use iterated lifting for the Welsch kernel and K = 3
(using Prop. 3) as follows:

Proposition 6. We have the identity

φWel,τ(x) = min
w1,w2,w3

w3

(
w2

(
w1

x2

2
+ γWel,s2τ,∞(w1)

)
+ γWel,sτ,s(w2)

)
+ γWel,τ,s(w3) (21)

Thus, we can optimize the Welsch kernel at a desired shape parameter τ by applying a non-
linear least squares solver to an iterated lifted representation using successively larger shape
parameters. Similar expressions can be obtained for other robust kernels such as the Smooth
truncated kernel or Geman-McClure (again using Prop. 3).
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Figure 2: Average objective (and standard deviation) reached by the different methods for
robustly fitting the mean to synthetically generated data points.

Implementation: The obvious choice for a numerical implementation is to minimize Eq 17
or Eq. 21 by jointly optimizing over all weights w1, . . . ,wK and parameters θ . It can be
shown theoretically and in practice, that this behaves very similar to standard half-quadratic
lifting using joint optimization. The benefit of iterated lifting is the higher flexibility of
choosing a schedule of how parameters and weights are updated. A schedule working well
in our problem instances is given as follows: we increase the set of optimized variables
after T Levenberg-Marquardt iterations (first θ only, then w1 ∪ θ , then w2 ∪w1 ∪ θ until
wK ∪ . . .∪w1 ∪ θ , and starting over the cycle). All weights w1 . . . ,wK are initialized to 1.
We use T = 1 in our experiments. Since weights have to be non-negative, we parametrize
wk = u2

k with uk ∈ R.

5 Numerical Results

We implemented Iterated Reweighted Least Squares (IRLS), joint half-quadratic optimiza-
tion (HQ) and iterated lifting based on a sparse Levenberg-Marquardt method in C++ (using
colamd and sparse Cholesky decomposition from the SuiteSparse library). Since we employ
a sparse but direct solver for the trust region subproblems, our implementation is limited to
medium large problem instances. We use the Welsch kernel as target cost and set s = 2 in
the K-lifted representation.

Synthetic data: For the first experiment we robustly fit a mean vector θ to synthetically
generated D-dimensional point data d at a given inlier ratio. Outliers are uniformly dis-
tributed in [−20,20]D, and inliers are in N (µ, ID), where the mean vector and its initial
estimate θ are also uniformly sampled from [−20,20]D. The robust kernel is chosen to be
the Welsch kernel at τ = 1/2, thus the problem we consider has the following objective,

min
θ

N

∑
i=1

φWel, 1
2
(

√
(di−θ)T (di−θ)). (22)

In order to apply iterated lifting to this problem, we simply use the expression given in
Prop. 3 to obtain a K-lifted representation. For the case K = 3, it corresponds to applying
Eq. 21 to transform Eq. 22 into a non-linear least squares problem. Fig. 2 depicts the average
objective values (and the respective standard deviation) reached by the different methods
after 100 runs for varying choices of inlier ratios and D = 3. There is a clear ordering of
methods that can be summarized as 4-lifting� 3-lifting� 2-lifting� HQ� IRLS.
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Figure 3: Objective values reached by the different methods for metric bundle adjustment
(a) and full bundle adjustment additionally optimizing over focal length and lens distortion
parameters (b).

Bundle adjustment data: We selected 2 problem instances from each of the 5 models in
the publicly available bundle adjustment data set [1] and used the given camera parameters
and 3D structure as initializer. The bundle adjustment objective is given by

∑φWel, 1
2

(
fiηi (π(RiX j + ti))− p̂i j

)
, (23)

where p̂i j ∈R2 is the observed image observation of the j-th 3D X j ∈R3 point in the i-image
with orientation Ri ∈ SO(3) and ti ∈ R3 and focal length fi. π : R3→ R2, π(X) = X/X3 is
the projection function, and ηi is the lens distortion function with ηi(p) = (1+ ki,1‖p‖2 +
ki,2‖p‖4)p. Fig 3(a) and (b) illustrate the achieved objective values using different meth-
ods for robust cost optimization for metric (optimize over 3D structure {X j} and camera
poses {(Ri, ti)}) and full (optimize over fi and lens distortion parameters as well) bundle
adjustment. In our current straightforward implementation 3-lifting has approximately 25%
overhead compared to the scheme proposed in [11], but reaches significantly better min-
ima in almost all cases (except dataset 2 “Ladybug-598”, which leads to “flatlining” of the
objective—i.e. large values for the damping parameter and extremely small improvements—
for several methods). We refer to the supplementary material for additional results.

6 Conclusion

In this paper, we proposed a novel robust cost optimization strategy called iterated lifting
that provides a gradual lifting scheme for a target robust kernel. To do so, we generalized
the standard half-quadratic lifting construction to non-quadratic basis kernels in order to be
able to lift a target robust kernel using another, less robust kernel as basis kernel. Then,
we demonstrated that this process can be iterated until the quadratic kernel is reached to
allow utilization of efficient non-linear least-squares solvers. The performances of our novel
approach were evaluated against Iterated Reweighted Least Squares (IRLS) [6] and joint
half-quadratic optimization (HQ) [11] both on synthetic and real data. In both cases, our
approach reached lower objective values than IRLS and HQ. As a future work, we plan
to investigate different lifting strategies that also allow a gradual lifting for a target robust
kernel.
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