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Abstract. This work addresses the generic problem of global motion es-
timation (homographies, camera poses, orientations, etc.) from relative
measurements in the presence of outliers. We propose an efficient and ro-
bust framework to tackle this problem when motion parameters belong
to a Lie group manifold. It exploits the graph structure of the problem as
well as the geometry of the manifold. It is based on the recently proposed
iterated extended Kalman filter on matrix Lie groups. Our algorithm it-
eratively samples a minimum spanning tree of the graph, applies Kalman
filtering along this spanning tree and updates the graph structure, until
convergence. The graph structure update is based on computing loop
errors in the graph and applying a proposed statistical inlier test on Lie
groups. This is done efficiently, taking advantage of the covariance matrix
of the estimation errors produced by the filter. The proposed formalism
is applied on both synthetic and real data, for a camera pose registra-
tion problem, an automatic image mosaicking problem and a partial 3D
reconstruction merging problem. In these applications, the framework
presented in this paper efficiently recovers the global motions while the
state of the art algorithms fail due to the presence of a large proportion
of outliers.

1 Introduction

This paper deals with the generic problem of estimating globally consistent mo-
tion parameters (global motions) from relative motion measurements in the pres-
ence of outliers. Such a problem occurs for instance in the context of camera pose
registration [1] encountered in 3D localization, structure from motion, camera
network calibration, etc. In this case, a motion or transformation is a rigid body
transformation matrix. Thus, the relative measurements correspond to the rigid
transformations between two cameras and the global motions we wish to esti-
mate are the rigid transformation matrices between a reference camera and all
the other cameras. For this specific application, two different kinds of outlier
measurements can occur. The first kind of outliers are statistically independent
from each other and arise from random failures such as RANSAC [2] failure,
erroneous matches between pair of images, etc. The second kind of outliers are
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not independent and are due to duplicated structures in the environment [3].
For example, 3 images taken in 3 different places that are very similar match
each other and thus produce 3 outlier relative motion measurements that are
coherent with each other.

The generic problem considered in this work has several other applications
such as multiple rotation averaging [4] (3-dimensional rotation matrices), im-
age mosaicking [5] (3-dimensional homographies) and partial 3D reconstruction
merging [6] (4-dimensional similarity transformation matrices).

All these applications can be seen as an inference problem in a pairwise fac-
tor graph (PFG) where both the vertices, i.e the global motions, and the edges,
i.e the noisy relative motions, evolve on a matrix Lie group [7]. Indeed, a 3D
rotation matrix evolves on the Lie group SO (3) [7], the rigid body motion ma-
trices correspond to the Special Euclidean Lie group SE (3) [8], the homography
matrices can be identified with the Special Linear Lie group SL (3) [9], and the
3D similarity transformation matrices form the Lie group Sim (3) [10].

In these applications, as explained above for the camera pose registration
problem, the outlier measurements might not be independent and frequently
outnumber the inlier measurements. As a consequence, robust optimization ap-
proaches, such as Huber norm [11], that do not explicitly exclude the outliers
from the estimation process, typically fail. Without additional information, such
as priors on whether a relative motion measurement is inlier or outlier, the solu-
tion forming the largest coherent set of relative motions may include dependent
outliers. Consequently, the global motions are not correctly recovered.

The formalism proposed in this paper can deal with any matrix Lie group
and includes the a priori information on whether a relative motion measure-
ment is inlier or outlier as a weighted adjacency matrix (WAM) of the PFG.
Consequently, it is able to tackle each of the previously mentioned applications
while excluding the outliers in the relative motion measurements. It relies on the
recently proposed Iterated Extended Kalman Filter on Lie Groups (LG-IEKF)
[12]. Our algorithm iteratively samples a minimum spanning tree (MST) in the
WAM of the PFG, applies the LG-IEKF along this MST and updates the WAM,
until convergence. The WAM update is based on computing loop errors in the
graph and applying a proposed statistical inlier test on Lie groups. This is per-
formed efficiently, taking advantage of the covariance matrix of the estimation
errors produced by the LG-IEKF.

The rest of the paper is organized as follows: the next section deals with
related work. Section 3 introduces the formalism of Lie groups. The proposed
framework is described in section 4. In section 5, our formalism is evaluated
experimentally on several applications. Finally the conclusion is provided in
section 6.

2 Related Work

A large amount of work has been recently devoted to specifically dealing with
multiple rotation averaging in the presence of outliers. This problem is also
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known as synchronization of rotations in the mathematics community and is
usually tackled by minimizing a given criterion. In [13] and [14], spectral relax-
ations of the problem are proposed while [15] uses their results as initialization
for a second order Riemannian trust-region algorithm to compute a local maxi-
mizer. [16] derives an algorithm that exactly estimates the global rotations when
a subset of the measurements are perfect and outperforms [14]. In [17] and [18],
two robust iterative algorithms, based on L1 and L1-L2 minimization criterion,
respectively, are devised. However, the considered error functions are not con-
vex and consequently need a good initialization such as [16] to avoid poor local
minima. Finally, [19] proposes a discretization of SO (3) to apply a loopy belief
propagation algorithm on the resulting Markov random field.

All the previously cited approaches, assume that the outliers are statistically
independent. Consequently, none of them is able to correctly recover the global
motions when this assumption is violated. The works [20], [21] and [22] are
also relevant for the multiple rotation averaging problem. However, they are
specifically tailored for SO (3) and it is not straightforward to apply them to
other Lie groups.

In [23], a method, that also assumes independent outliers, is derived to infer
the set of outliers. The authors introduce a Bayesian framework based on col-
lecting the loop errors in the PFG to infer outliers. Unfortunately, collecting the
loop errors becomes quickly intractable and the maximum loop length is limited
to 6. Consequently, many outliers cannot be detected (see [20] Fig.4). Limiting
the maximum loop length to 6 also allows them not to take into account the
uncertainty induced by the length of a loop. Moreover, when the outliers are not
independent, it is possible to find loops containing outliers that have a very low
loop error. Thus, in this case, the method fails to infer the dependent outliers
as it was shown on several examples in [24] and [3].

To the best of our knowledge, only one approach [3] was proposed to deal
with the generic problem of global motion estimation from relative measure-
ments in the presence of statistically dependent outliers. It is inspired by [25]
which proposed a RANSAC-like algorithm to estimate the global motions. It
consists in drawing spanning trees (ST) in the PFG. However, using random
sampling, the number of ST to draw before finding an outlier free ST is huge.
Thus, [3] proposes to sample the STs from a WAM in order to increase the
chances to draw an ST without outliers. For each sampled ST, an Expectation
Maximization (EM) algorithm is applied, introducing latent variables to classify
the measurements as inliers or outliers. Finally, from these labels, a likelihood
based on the weights of the WAM is defined and the solution of the ST which
maximizes this likelihood is chosen. This approach is shown to perform very well
on several small datasets. However, as we show in our experiments, it can only
be applied when the number of global motions is small. Moreover, the proposed
EM algorithm, although initialized with an outlier free ST, can converge to a
poor local minimum (see section 5).
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[26] is also a relevant work dedicated to large scale problems though, as
specified by the authors themselves, this method “cannot disambiguate” as well
as [3]. Consequently, in the rest of the paper, this approach is not considered.

In robotics, several relevant works [27–29] dedicated to robust graph SLAM,
have been published. However, they assume that an outlier free ST is given.
Furthermore, neither parameter estimation on Lie group nor measurements on
Lie group is addressed.

In this paper, we propose a generic approach combining a sampling approach,
as in [25], the use of a WAM, as in [3], and the computation of loop errors, as
in [23]. Based on these three ingredients, the recently proposed LG-IEKF [12]
and a proposed statistical inlier test on Lie groups, we derive an efficient algo-
rithm which is able to recover the global motions in the presence of statistically
dependent outliers when the state of the art algorithms, previously cited, fail.

3 Preliminaries

Introduction to matrix Lie groups In this section, we briefly introduce the matrix
Lie Groups for the specific purpose of transformation/motion estimation. For
a detailed description of these notions the reader is referred to [7]. If G is a
matrix Lie group, then Xij ∈ G ⊂ Rn×n is a transformation matrix that takes
a point xj ∈ Rn defined in the reference frame (RF) j to RF i, i.e xi = Xijx

j .
Two transformations Xij ∈ G and Xjk ∈ G can be composed using matrix
multiplication to obtain another transformation Xik = XijXjk ∈ G. Inverting a
transformation matrix Xij produces the inverse transformation, i.e X−1ij = Xji.
Consequently multiplying a transformation with its inverse produces the identity
matrix: XijXji = Idn×n. The matrix exponential expG and matrix logarithm
logG mappings establish a local diffeomorphism between an open neighborhood
of 0n×n in the tangent space at the identity TeG, called the Lie Algebra g,
and an open neighborhood of Idn×n in G. The Lie Algebra g associated to a
p-dimensional matrix Lie group is a p-dimensional vector space. Hence there is
a linear isomorphism between g and Rp that we denote as follows: [·]∨G : g →
Rp and [·]∧G : Rp → g. We also introduce the following notations: exp∧G (·) =
expG

(
[·]∧G
)

and log∨G (·) = [logG (·)]∨G. It means that a transformation Xjj′ that
is “close enough” to Idn×n can be parametrized as follows: Xjj′ = exp∧G (δjj′) ∈
Rp. Finally, we remind the adjoint representation AdG (·) ⊂ Rp×p of G on Rp
that enables us to transport an increment εiij ∈ Rp, that acts onto an element

Xij through left multiplication, into an increment εjij ∈ Rp, that acts through
right multiplication:

exp∧G
(
εiij
)
Xij = Xijexp

∧
G

(
AdG

(
X−1ij

)
εiij
)

= Xijexp
∧
G

(
εjij

)
(1)

where εjij = AdG
(
X−1ij

)
εiij = AdG (Xji) ε

i
ij .

Concentrated Gaussian Distribution on Lie Groups In this section, we briefly
introduce the concept of concentrated Gaussian on Lie groups [30–33] as a gen-
eralization of the normal distribution to Lie group manifolds. The distribution of
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Xij ∈ G is called a (right) concentrated Gaussian distribution on G of “mean”
µij and “covariance” Pii denoted Xij ∼ NR

G (µij , Pii) if:

Xij = exp∧G
(
εiij
)
µij = µijexp

∧
G

(
AdG

(
µ−1ij

)
εiij
)

= µijexp
∧
G

(
εjij

)
(2)

where εiij ∼ NRp (0p×1, Pii), ε
j
ij ∼ NRp

(
0p×1, AdG

(
µ−1ij

)
PiiAdG

(
µ−1ij

)T)
and

Pii ⊂ Rp×p is a definite positive matrix. Such a distribution gives us a meaningful
covariance representation. In the rest of the paper, it will allow us to quantify the
uncertainty of both the global and the relative motions and thus to statistically
define a threshold to reject outlier measurements.

4 Global Motion Estimation from Relative Measurements
in the Presence of Outliers

In this work, we aim at estimating global motions {XiR}i=1:N , where each global

motion XiR ∈ G
′

is defined as the motion between a main RF R and a RF i, and
G

′
is a p-dimensional matrix Lie group such as SO (3), SE (3), SL (3), Sim (3),

etc. An illustration of global motions in the context of an outlier free consistent
pose registration problem (Lie group SE (3)) is presented in Fig.1a. First of all,
we describe the case where relative motion measurements are not corrupted with
outliers. Then, we treat the case of robust estimation.

4.1 Outlier Free Estimation

This section is mainly a summary of [12], however, its understanding is manda-
tory for the rest of the paper.

Model We consider the case where the noises on the (inlier) relative motion
measurements {Zij}1≤i<j≤N are mutually independent. Each Zij ∈ G

′
denotes

a noisy relative motion between a RF j and a RF i expressed as follows:

Zij = exp∧G
(
biij
)
XiRX

−1
jR (3)

where biij ∼ NRp (0p×1, Σii) is a white Gaussian noise. The problem considered
can be seen as the inference in a PFG G = {V, E}, where each vertex Vi cor-
responds to a global motion XiR and each pairwise factor Eij corresponds to a
relative measurement Zij (see Fig.1b). In this paper, G denotes either the PFG
itself or its (weighted) adjacency matrix.

Under the concentrated Gaussian assumption, the maximum likelihood esti-
mates of the global motions denoted {µiR}i=1:N are then defined as:

{µiR}i=1:N = argmin
{XiR}i=1:N

∑
i,j

∥∥log∨
G′
(
ZijXjRX

−1
iR

)∥∥2
Σii

 (4)

where ‖·‖2Σ stands for the squared Mahalanobis distance.
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(a) Top view of camera poses (b) Pairwise factor graph

(c) Initialization (d) Propagation (e) Update

Fig. 1: Illustration of an outlier free consistent pose registration problem (Lie
group SE (3)): (a) a cone represents a camera (global motion) and a link between
two cones indicates that a relative motion measurement is available. (b)-(e)
please see explanations in section 4.1

Iterated Extended Kalman Filter on Matrix Lie Groups The problem
considered in (4) has several local minima and an efficient way to reach a “good”
local minimum is to apply an LG-IEKF (see [12]). The idea is to draw an ST
from the adjacency matrix G of the PFG that guides the global motion estimates
at each propagation step of the filter. At each update step of the filter, the rel-
ative motions that close loops in the graph are used to refine the global motion
estimates and reduce their uncertainty.
Spanning Tree T : Let’s consider an ST of the PFG G : T = {V, ET }.
ET = (Cm)m=0:N−2 corresponds to a tree traversal ordered such that
Cn = ZiT (n)jT (n) is connected to the tree built from (Cm)m=0:n−1. The in-
dex m can be seen as a time instant and will be referred as such in the rest of
the paper. The notations iT (m) and jT (m) indicate the referential frames i and
j associated to the relative measurement Cm.
Loop Closure L: In this context, a loop closure (LC) at time instant n is a rel-
ative measurement Zij /∈ ET connected to the tree built from (Cm)m=0:n+1 and
not connected to the tree built from (Cm)m=0:n. We define the ordered LCs as
L = (Mm)m=1:N−2. Note that the size of Mm depends on the time instant m. In-
deed, for instance, if two LC occur at time instant m, then
Mm =

{
ZiL(m,1)jL(m,1), ZiL(m,2)jL(m,2)

}
is a set that contains two relative mea-

surements. The notations iL (m, z) and jL (m, z) indicate the referential frames i
and j for the zth LC of Mm. We introduce the following notation:
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Mm
z = ZiL(m,z)jL(m,z) which means that at time instant m, the zth LC is a trans-

formation from RF jL (m, z) to RF iL (m, z). From an implementation point of
view, the variables iT , jT , iL and jL are tables of indices indicating the RFs
associated to the relative transformation measurements in ET and L.
Measurement Covariance: In the two previous paragraphs, we have intro-
duced notations to distinguish a relative measurement ZiT (n)jT (n) that is part
of ET from a relative measurement ZiL(m,z)jL(m,z) that is part of L. All these
measurements arise from the same generative model (3). Thus the covariance
matrix of ZiT (n)jT (n) is noted ΣiT (n)iT (n) whereas the covariance matrix of
ZiL(m,z)jL(m,z) is noted ΣiL(m,z)iL(m,z).
Scheduling: A scheduling is a choice of ET for a given graph G. A possible
scheduling for the graph presented Fig.1b is:
ET =

(
C0 = Z34, C

1 = Z23, C
2 = Z45, C

3 = Z14

)
. It implies the following set

of LC: L =
(
M1 = Z24,M

2 = {∅} ,M3 =
{
M3

1 ,M
3
2

}
= {Z12, Z15}

)
Algorithm: Once a scheduling is decided, the LG-IEKF algorithm (see [12])
can be applied to estimate both the global motions µ and the covariance of the
estimation errors P . Step 1 (Initialization), 2 (Propagation) and 3 (Update) of
the LG-IEKF algorithm are illustrated Fig. 1c, 1d and 1e for the scheduling
previously defined.

4.2 Estimation in the presence of outliers

The LG-IEKF algorithm described in the previous section is not robust to out-
liers in the relative motion measurements all the more the noise is modeled as a
concentrated Gaussian distribution on Lie groups (see (3)). In this section, we
show how to perform the estimation in the presence of outliers.

Outlier Definition and Inlier Test As previously explained, the outliers
arising in the problem we consider in this paper can be statistically dependent.
It is a difficult task to propose a generative model in this case. Consequently,
in this work, we simply use a discriminative way to define an outlier. A relative
motion measurement Zij is an outlier if and only if:∥∥log∨

G′
(
ZijXjRX

−1
iR

)∥∥2
Σii

> thresh (5)

where thresh is a threshold to be defined. Note that, with this definition, a
relative measurement generated using the inlier model (3) can be classified as
outlier. However, if thresh is large enough, it is very unlikely to happen.

From the outlier definition given in (5), we propose a statistical inlier test
on matrix Lie groups that will be employed in our robust estimation framework:
let’s assume that we have estimated the two global motions XiR and XjR, as
well as the covariance of the estimation errors from the relative motion measure-
ments {Zkl}(k,l)∈T (T is a subset of all the measurements) without involving the

relative measurement Zij , i.e (i, j) /∈ T . We would like to know whether Zij is an
“inlier” or not w.r.t the current estimates of XiR and XjR. Assuming that the
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distribution of the two global motions XiR and XjR conditioned by the relative
measurements {Zkl}(k,l)∈T is a Gaussian distribution on Lie groups, we have:

XiR| {Zkl}(k,l)∈T = exp∧
G′
(
εiiR
)
µiR and XjR| {Zkl}(k,l)∈T = exp∧

G′

(
εjjR

)
µjR

(6)

where cov (ε) = cov

([
εiiR
εjjR

])
=

[
Pii Pij
Pji Pjj

]
. From (3), we have the following

result:

Zij = exp∧G
(
biij
)
exp∧

G′
(
εiiR
)
µiRµ

−1
jRexp

∧
G′

(
−εjjR

)
(7)

= exp∧G

(
biij + εiiR −AdG′

(
µiRµ

−1
jR

)
εjjR +O

(
‖ε‖2 ,

∥∥biij∥∥2))µiRµ−1jR (8)

Thus, neglecting second order terms, the error negative log-likelihood has the
following expression:

err =
∥∥log∨

G′
(
ZijµjRµ

−1
iR

)∥∥2
Qerr

(9)

where

Qerr = cov
(
εiiR −AdG′

(
µiRµ

−1
jR

)
εjjR + biij

)
(10)

=
[
Idp×p −AdG′

(
µiRµ

−1
jR

)] [Pii Pij
Pji Pjj

][ Idp×p

−AdG′

(
µiRµ

−1
jR

)T ]+Σii (11)

and is distributed according to the chi-squared distribution with p degrees of
freedom, i.e err ∼ χ2 (p). Consequently, one way to decide whether Zij is an
inlier w.r.t the current estimates of XiR and XjR is to define a threshold based
on the p-value of χ2 (p) [34]. Note that since we neglected second order terms,
this threshold is possibly restrictive, thus in practice we take a larger threshold
than the theoretical one.

Loop Voting The robust framework that is presented in the next section is
based on “loop voting”. The idea of “loop voting” is simple: assuming an ST
ET = (Cm)m=0:N−2, which probably contains outliers, has been drawn from G,
we apply the LG-IEKF algorithm. At time instant k, between Step 2 and Step
3 of this algorithm, we perform the inlier test described in section 4.2 for the
upcoming loop closures Mk. For simplicity let’s consider the first loop closure
Mk
iL(k,1)jL(k,1), moreover we define m = iL (k, 1) and n = jL (k, 1). If the inlier

test, for this loop closure, is validated, i.e∥∥∥∥log∨G′

(
Zmnµ

k|k−1
nR

(
µ
k|k−1
mR

)−1)∥∥∥∥2
Qerr

< thresh, then we found a measurement

that is “coherent” with the path P in ET from RF m to RF n. Thus we mark
the relative motions of P as “checked”1. Note that, if ET contains dependent

1 We use the Matlab library Matgraph [35] to find the path between m and n.
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outliers (from duplicate structures in the scene for instance), then it is possible
to close wrong loops and thus to “check” outliers. This point is discussed in the
next two sections.

Proposed Framework In order to perform the robust estimation of global
motions from relative motions in the presence of statically dependent outliers,
we proposed to combine three ideas:

- sampling Minimum Spanning Trees (MST) from a weighted adjacency matrix
(WAM), as in [25, 3]. The WAM contains prior information on whether a rela-
tive measurement is inlier or outlier. Without this prior information, the solution
forming the largest coherent set of relative motions may include dependent out-
liers. However, even with a WAM, the combinatorial search of the “best” relative
motions configuration is intractable. In [3], it is proposed to sample a large num-
ber of spanning trees from the WAM, to perform an optimization on each ST
and to keep the best solution. Nevertheless, we show in section 5 that their ap-
proach can only be applied for a small number of global motions. In order to
obtain an algorithm that is applicable for larger problems, we assume that an
MST of G does not contain dependent outliers (it may contain independent out-
liers). This assumption might appear restrictive, however, for image sequences
for example, it is usually satisfied (see section 4.2). Indeed, the image times-
tamps can be used to build a WAM that favors images that are close in time. In
this case, an MST will not contain dependent outliers since the relative motion
measurement between two consecutive images is normally either an inlier or a
statistically independent outlier (in the case of a RANSAC failure for example).
When timestamps are not available, one way to attribute weights to the edges
is to consider “missing correspondence cue” (see [3]). Note that if there is only
statistically independent outliers, our approach does not need a WAM.

- applying the LG-IEKF proposed in [12]. This algorithm achieves similar per-
formances as compared to a Gauss-Newton (GN) approach while taking only a
fraction of its computational time. It also estimates the covariance of the esti-
mation errors which is necessary for our inlier test (see section 4.2). Recovering
those covariances from the solution of a GN is computationally very expensive.

- performing loop voting in order to infer the set of inliers. In [23], the maxi-
mum loop length is limited to 6 in order not to take into account the uncertainty
induced by the length of a loop. On the contrary, we explicitly model this un-
certainty with the LG-IEKF and derive a statistical inlier test on matrix Lie
groups. Thus we are able to close long loops. Consequently, even in the case of
statistically independent outliers assumed in [23], our approach outperforms the
algorithm proposed in [23].

Our approach works as follows: first of all, we sample an MST from the WAM
G. Then an LG-IEKF is applied on this MST with inlier test (see section 4.2)
and loop voting (see section 4.2) at each loop closure. If every relative motion
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Algorithm 1 Robust approach

Inputs: G (weighted adjacency matrix), {Zij}1≤i<j≤N (relative motions), {Σii}1≤i<j≤N

(covariance matrices), thresh (p-value of χ2 (p))

Outputs: µ (global motions), P (full covariance matrix of global motions)

1. Draw an MST in G to get ET = (Cm)m=0:N−2, L = (Mm)m=1:N−2 and the tables
of indices iT , jT , iL and jL

2. Initialize1 µ and P
with inputs C0, Q0 = ΣiT (0)iT (0), iT , jT
to get µ0|0 and P 0|0

3. Propagate1 µk−1|k−1 and P k−1|k−1

with inputs µk−1|k−1, P k−1|k−1, Ck, Qk = ΣiT (k)iT (k), jT
to get µk|k−1 and P k|k−1

4. Verify Loop Closures Mk
z as explained in section 4.2

with inputs µ
k−1|k−1

iL(k,z)R , P
k−1|k−1

iL(k,z)iL(k,z), µ
k−1|k−1

jL(k,z)R , P
k−1|k−1

jL(k,z)jL(k,z), P
k−1|k−1

iL(k,z)jL(k,z), M
k
z ,

ΣiL(k,z)iL(k,z), thresh

(a) if Mk
z is not validated, remove it from Mk, iL and jL

(b) else mark as “checked” the path in ET that led to this loop closure as explained
in section 4.2

5. Update1 µk|k−1 and P k|k−1

with inputs µk|k−1, P k|k−1, Mk, Rk = blkdiag
({
ΣiL(k,z)iL(k,z)

}
z

)
, iL, jL

to get µk|k and P k|k

6. Iterate Step 3 to Step 6 until k = N − 2
7. If every relative motion in ET has been “checked” at least once, return µ and P ,

otherwise up-weight (or remove) from G the relative motions involved in ET that
have not been “checked” and go to 1.

1 Further details on steps 2, 3 and 5 are provided as supplementary material.

that is part of the MST have been “checked” at least once, i.e each relative
motion in the MST is involved in at least one validated loop closure, then the
global motion estimates correspond to the output of the LG-IEKF. Otherwise,
the relative motions involved in the MST that have not been “checked” are up-
weighted (or deleted) from G and a new MST is drawn. The algorithm iterates
until convergence of G, i.e until an MST is completely checked. The complete
algorithm is summarized in Algorithm 1.

Limitations The proposed approach may fail in several cases.
First of all, we assume that an MST of the WAM does not contain depen-

dent outliers. If it does, depending on the graph structure, it may be possible
to close loops that involve these dependent outliers. In this case, those outlier
measurements are not rejected and the global motions are not correctly recov-
ered. In practice, this limitation is not as strong as it appears. For instance, this
was satisfied for all experiments shown in [3] (see the ground truth matrix of
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(b) Estimation error of the global
motions (please see text for details)

Fig. 2: Comparison of our approach to [3] and [18] on a camera pose estimation
problem (λ = 1

10 and number of relative motions fixed to 5N +n with n = 60).

each dataset in [3]) as well those shown in this paper (see section 5). Note that
if there is only statistically independent outliers, our approach does not need a
WAM to recover the global motions.

Secondly, if a relative motion measurement is deleted after an iteration of
our algorithm, the graph might become disconnected. If it happens, it means
that there is not enough redundancy in the graph structure to correctly recover
the global motions. In this case, our approach can be applied to each connected
component separately.

5 Applications and Results

In this section, the proposed framework is experimentally validated both on
simulated and real data.

(a) True trajectory (b) Result of [18] (c) Result of [3] (d) This paper

Fig. 3: Camera Pose registration problem results, a cone represents a camera
pose, a black line is an inlier measurement and a gray dashed line is an outlier

Simulated data with independent outliers: Camera pose registration problem In
this section, we compare the performance of the proposed approach to two state
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of the art algorithms [3] and [18] on a camera pose registration problem (Lie
group SE (3)). [18] was developed to deal with SO (3) but its extension to
SE (3) is straightforward. We simulate circular camera trajectories (see Fig.3)
with N cameras where each camera XiRTrue

has a timestamp ti and we gen-
erate noisy relative motions as follows: first of all, a measurement can be ei-
ther an inlier or an outlier. We model the probability of a measurement as
P (Zij is inlier) = exp (−λ |ti − tj |) where λ is a user-chosen parameter, i.e a
larger time difference increases the chance to produce an outlier. After having
drawn the label of a measurement (inlier or outlier), we sample the measurement.
The distribution of the independent outliers is modeled as a centered Gaussian
distribution on Lie groups with a large covariance matrix (the large covariance
is not a problem in this case since log∨SE(3) is defined on the whole group) while

an inlier can be sampled using (3). In our implementation, we use the Lie alge-
bra basis of se (3) given in [8] and the WAM G is built from the absolute time
differences of the camera timestamps, i.e a low weight corresponds to a confident
measurement and an infinite weight is given when a measurement is missing.

In Fig.2a, we show that the method proposed in [3] can be applied only
on very small problems. Indeed, one can see that when the number of cameras
increases (N grows), it becomes quickly very difficult to draw an ST without
outliers even with the help of a weighted adjacency matrix. In comparison, our
approach, that iteratively updates the weighted adjacency matrix, always finds
an ST without outliers in a few samplings.

In Fig.2b, we compare our optimization method (LG-IEKF with inlier test)
against the robust approach proposed in [18] and the Expectation Maximization
algorithm (EM) of [3]. The three approaches are provided the same outlier free
spanning tree. [18] and [3] are initialized by composing the relative measurements
of the ST as it is proposed by the authors of those papers. In order to compare the
results of each approach to the true global motions, we need to add a step to align
the estimated global motions with the true global motions. For that purpose,
we apply a Gauss-Newton algorithm to minimize the sum of the following error:∥∥logSE(3)

(
µiRXRRTrue

X−1iRTrue

)∥∥2. The error obtained, for each approach, at
convergence of the Gauss-Newton is presented in Fig.2b. We show that our
method outperforms both [18] and [3]. Indeed, [18] is based on a robust convex
L2-L1 norm to mitigate the influence of the outliers. However, because of the Lie
group curvature, the complete functional is not convex. Therefore, the algorithm
usually gets stuck in a poor local minimum. [3] introduces latent variables to
classify the relative motions as inliers or outliers. However, the labels obtained
at the initialization of the global motions are very difficult to modify. Indeed,
the E-step does not take into account the estimation errors of the current global
motion estimates which is negligible only when N is small. Therefore, a lot of
inlier relative motion remain classified as outliers. In comparison, our approach
incrementally rejects outliers, taking into account the current uncertainty of the
global motions, and refines its estimates with the inliers. Consequently, the global
motions are correctly recovered. An example of recovered global motions with
the three different approaches is presented Fig.3.
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Real data with statistically dependent outliers: Partial 3D reconstruction merging
problem The algorithm presented in this paper is applied to a partial 3D recon-
struction merging problem (Lie group Sim (3)). Due to the lack of space, the
details and results of this experiment are provided as supplementary material.

Real data with statistically dependent outliers: Automatic planar image mosaick-
ing problem The algorithm presented in this paper is applied to an automatic
planar image mosaicking problem. We took 53 photos of a planar scene (see
Fig.4a) with a smartphone, detected points of interest and estimated the ho-
mographies (lie group SL (3)) between every pair of images using a RANSAC
algorithm followed by a Gauss-Newton algorithm on SL (3). The covariance ma-
trix of each relative motion is obtained by inverting the approximated Hessian
matrix once the Gauss-Newton has converged. In our implementation, we use
the Lie algebra basis of sl (3) given in [36] and the weighted adjacency matrix
is obtained from the absolute time differences from the images timestamps. In
this dataset, there are 65% of statistically dependent outliers (see Fig.4b) due
to the ambiguity of the scene (some paper sheets are almost identical). In Fig.4,
we compare the results of our approach against the EM algorithm of [3] which
is initialized by composing the relative homographies of the MST obtained with
our algorithm. On the one hand, once again, the proposed EM of [3] classifies
a lot of inliers as outliers since the estimation errors of the global motions esti-
mates is not taken into account during the E-step. Consequently, [3] is not able
to correctly recover the global motions (see Fig.4c). On the other hand, our ap-
proach perfectly infers the set of inliers and produces a very precise mosaic (see
Fig.4d). We could not apply [18] because logSL(3) is not defined on the whole
group. We also tried to compare our formalism to the openCV implementation of
[5], however, due to the high ambiguity of the scenes, it was not able to produce
any result.

6 Discussion & Conclusion

First of all, we would like to stress 3 aspects concerning the paper:
- This work addresses the fundamental problem of robust motion averaging for
any Lie group especially “mixed” groups such as SE (3), SL (3) or Sim (3);
- It deals with cases where there are more correlated outliers than inliers. For in-
stance, our image mosaicking dataset has 65% of dependent outliers. Therefore,
we are beyond the stage at which the independent outlier assumption starts to
degrade gracefully (see comparison with [23] in [3]);
- The proposed approach significantly outperformed the two state of the art al-
gorithms [3] and [18], on SE (3), SL (3) and Sim (3).

The contributions2 of the paper are:
- Proper handling of non-isotropic covariances on Lie groups coupled with an

2 The supplementary material and the Matlab code are available at
https://sites.google.com/site/guillaumebourmaud/
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efficient incremental approach to avoid local minima;
- Definition of a new χ2 inlier test that deals with “mixed” groups;
- A new tree sampling scheme aimed at significantly reducing the computational
cost of the sampling scheme of [3]. This new sampling scheme allows to handle a
much larger number of motions N (typically N = 1000). N is no longer limited
by the sampling scheme but only by the memory size of the estimated covariance
matrix (6N × 6N for SE (3));

The first 3 contributions of this paper could be applied inside a Structure
from Motion pipeline such as [3] or [21] but this is out of the scope of the current
paper and left as future work. Thus, when comparing to [3], we consider only
their robust motion averaging approach and did not use their Structure from
Motion datasets. Consequently, we compared neither to [21] nor to [24] (that do
not solve any motion averaging problem).

In fact, our contributions concern mainly “mixed” groups which do not have
robust enough solutions yet. The proposed approach is based on a generic matrix
Lie group formulation, which should be usable on a wide variety of applications.
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Fig. 4: Image mosaicking: in the labeling matrices a white pixel is an inlier, a
black pixel corresponds to an unavailable measurement, a gray pixel corresponds
to an outlier. Observe that our labeling inlier/outlier is perfect (see 4d).
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