Sparse-to-Dense Hypercolumn Matching for Long-Term Visual Localization
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outperforms traditional keypoint matching in

challenging conditions.

Ablation study run on RobotCar Seasons nighttime images
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e Feature matching using generic feature e The query correspondent should be searched
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We consider a hierarchical localization pipeline,
similar to HF-Net:Given a query image, we first

identify a set of prior locations using image

retrieval. We then match feature points across _ , , ,
But in a long-term scenario, consistent Here make use of appropriate feature

the 2D query image and the retrieved local 3D . o . . .
detection and matching is hard. descriptors, coming from the retrieval network.

point cloud. This step, however, is prone to fail
as it is still very difficult to detect and match
sparse feature points across very different

conditions. Cyj € R Quantitative Results
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We train our image-retrieval pipeline using the \ 20
popular pooling layer NetVLAD. - R 40
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Localization recall for Fine (F), Medium (M) and Coarse(C)

https://github.com/germain-hug/S2DHM thresholds.
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