Introduction aux réseaux de neurones pour
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V1) Apprentissage des paramétres
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Choix du colt I(y,s) : Régression
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Choix du colt I(y,s) : Régression
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Choix du colt [(y, s) : Classification
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Choix du colt [(y, s) : Classification
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Choix du colt [(y, s) : Classification
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Choix du colt [(y, s) : Classification
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Choix du colt [(y, s) : Classification
0 c
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Choix du colt [(y, s) : Classification
0 c
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Choix du colt [(y, s) : Classification
0 c

X ¢ s € R” : y€10,1,2,..,C -1}
> f > [ -
- o exp(sy)
« Cross-entropy » CE(s,y) = —ln(py) ou P ZCC:_Ol exp (Sc)
" _/
~

-100 0

« softmax »

-100 0 y — 2
> softmax >
100 1

-100 0 = _ln(l) :O
A 3
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Exemple : prédiction « parfaite » i—0
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Choix du colt [(y, s) : Classification
0 c

X ¢ SERC f yE{O,l,Q,,C—l}
> f > [ <
exp (s;)
« Cross-entropy » CE(s,y) = —In(p,) ol Pi= &3
Zczo €xXp (Sc)
N ~ )
« softmax »

-100 0 y — 2
> softmax >
-100 0

c=—1n(0) = 400

-100 0
3

4
seR p€A3:sz-:letpiZOpouri:O,...,S 14
Exemple : prédiction «trés mauvaise» i—0
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Exemple de classification : 5 données, X € R* et Y € {0, 1, 2}

Xtrain,l - [127 _34] Xtrain,2 — [237 28] Xtrain,S — [_077 12] Xtrain,4 — [327 _04] Xtrain,S - [_137 _23]
Ytrain,l =0 Ytrain,2 =0 Ytrain,S =1 Ytrain,4 =1 Ytrain,S =2
x
®
[
|
X

15
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Exemple de classification : 5 données,X € R et Y € {0, 1, 2}

Xerain,1 = [1.2, =3.4]  X¢rain,2 = [2.3,2.8]  Xgrain,3 = [—0.7,1.2]  Xtrain,a

_ 3.2, —0.4] Xerains = [—1.3, —2.3]
Ytrain,l =0 Ytrain,2 =0 Ytrain,S =1 Ytrain,4

1 Ytrain,S =2
. . (1) KL 3) KB (L) w(L)
Choix de la fonction W &b W *’b W *’b
x = x(® «(1) x(2) «x(3) x(L—2) x(L—1) <L) — g
— P FC[ P _ [ P FC P P FC [P
2x1 Hx1 Hx1 Hx1 Hx1 Hx1 3 x1
x
o
01 e
| -
—4] x

16
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Exemple de classification : 5 données,X € R et Y € {0, 1, 2}

Xtrain,l — [127 _34] Xtrain,2 — [237 28] Xtrain,3 [_077 12] Xtrain,4 [327 _04] Xtrain,5 — [_137 _23]

Ytrain,l =0 Ytrain,2 =0 Ytrain,3 =1 Ytrain,4 =1 Ytrain,S =2
. . (1) 1) 3) B3 (L) pL)
Choix de la fonction W &b Y &b " *’b
w — %O (D «(2) 3 (L-2) (L—1) D) _
—®» c——®»_—®»FCc[—®»---— —® FC|—P
2x1 Hx1 Hx1 Hx1 Hx1 Hx1 3x1
x

Probléme : on souhaite prédire une valeur
discrete, mais la sortie du MLP est continue.

17
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Exemple de classification : 5 données, X € R* et Y€ {0,1,2}

Xtrain,l - [127 _34] Xtrain,2 — [237 28] Xtrain,3 — [_077 12] Xtrain,4 - [327 _04] Xtrain,5 - [_137 _23]
Ytrain,l =0 Ytrain,2 =0 Ytrain,3 =1 Ytrain,4 =1 Ytrain,5 =2
. . (1) 1) (3) p3) (L) (L)
Choix de la fonction W &b W *’b W *’b
« — x(0 (D e 3 (L-2) S (L—1) (L) _ &
— FC | — > Ffc [ - P c |
2x1 Hx1 Hx1 Hx1 Hx1 Hx1 3x1
R
) - X
< o s qe ®
Probléme : on souhaite prédire une valeur ] .
discrete, mais la sortie du MLP est continue.
- -
-4 x
Solution : on prédit un score par classe, et la

classe prédite sera celle du score maximum.

18
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Exemple de classification : 5 données,X € R et Y € {0, 1, 2}

Xtrain,l - [127 _34] Xtrain,2 — [237 28] Xtrain,3 [_077 12] Xtrain,4 [327 _04] Xtrain,S - [_137 _23]

Ytrain,l =0 Ytrain,2 =0 Ytrain,S =1 Ytrain,4 =1 Ytrain,S =2
. . (1) 1, (1) (3) 1(3) (L) 1,(L)
Choix de la fonction W &b W &b W *’b
) D @ 3 (L2 (L=D) D) o
— > fc| ®» S > | >
2x1 Hx1 H x1 Hx1 Hx1 Hx1 3x1
f(2:0) = MLP (2;0 = (W@, b®},) .
X
hyper-paramétres : L, H °
[ )
. .
-4 x

19
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Exemple de classification : 5 données,X € R et Y € {0, 1, 2}

Xtrain,l - [129 _34] Xtrain,2 — [237 28] Xtrain,3 — [_077 12] Xtrain,4 - [327 _04] Xtrain,S - [_137 _23]
Ytrain,l =0 Ytrain,2 =0 Ytrain,S =1 Ytrain,4 =1 Ytrain,S =2
. . (1) 1) 3) B3 (L) pL)
Choix de la fonction " &b Y &b " *’b
% — %O (D () 3@ 5 (L-2) W (L—1) D) o
—»  c—®»_ S kct—®»---—» +——» ci—»
2x1 Hx1 Hx1 Hx1 Hx1 Hx1 3x1

f (2:0) = MLP (z;0 = u®, b},

hyper-paramétres : L, H

[ (y,s) = — In (softmax (s) [y])

« Cross-entropy »

20
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Exemple de classification : 5 données,X € R et Y € {0, 1, 2}

Xtrain,l — [127 _34] Xtrain,2 — [237 28] Xtrain,S — [_077 12] Xtrain,4 — [327 _04] Xtrain,S — [_137 _23]
Ytrain,l =0 Ytrain,2 =0 Ytrain,S =1 Ytrain,4 =1 Ytrain,S =2
. . (1) 1,1 (3) 1,(3) (L) (L)
Choix de la fonction W &b W &b W *’b
) D @ 3 (L2 (L—1) D) o
— > fc| ®» S > | >
2x1 Hx1 Hx1 Hx1 Hx1 Hx1 3x1
f (2:0) = MLP (z;0 = u®, b},
X
hyper-paramétres : L, H ¢ .
[ |
X
[ (y,s) = — In (softmax (s) |y])
; ) B —
* . .
0" = arg min E — In (softmax (MLP (Xtrain.i; 0)) [Ytrain.i])
0 :
1=1

21
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Exemple de classification : 5 données,X € R et Y € {0, 1, 2}

Xtrain,l - [127 _34] Xtrain,2 — [237 28] Xtrain,S — [_077 12] Xtrain,4 — [327 _04] Xtrain,S - [_137 _23]
Ytrain,l =0 Ytrain,2 =0 Ytrain,S =1 Ytrain,4 =1 Ytrain,S =2
: ) (1) (1) GIENE)) (L) (L)
Choix de la fonction W &b W &b W *’b
% — x(® ey %(2) <3 x(L-2) 5 (L—1) <L) — g
— > fc| ®» S > | >
2x1 Hx1 Hx1 Hx1 Hx1 Hx1 3x1
[ [
f (2:0) = MLP (z;0 = u®, b},
X
hyper-paramétres : L, H ¢
o

[ (y,s) = — In (softmax (s) [y])

5 =3 -2 -1 0] i 2 3 4 5

0" = arg min Z — In (softmax (MLP (Xtrain.i; 0)) [Ytrain.i])
o =

p * - 22
Inférence Stest = MLP (Ztest; 07) Classe prédite : arg max Stest
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Exemple de classification : 5 données, X € R* et Y€ {0,1,2}

Xtrain,l — [1-27 _34] Xtrain,2 — [237 28] Xtrain,3 - [_077 12] Xtrain,4 — [327 _04] Xtrain,5 — [_1-37 _23]
Ytrain,l =0 Ytrain,2 =0 Ytrain,3 =1 Ytrain,4 =1 Ytrain,5 =2
. . (1) 1) 3) B3 (L) L)
Choix de la fonction W &b W &b W *’b
« — x(© (D (2 <3 (L—2) (1) <L) _ g
—»  c—®»_ S kct—®»---—» +——» ci—»
2x1 Hx1 Hx1 Hx1 Hx1 Hx1 3x1

f (2:0) = MLP (z;0 = u®, b},

hyper-paramétres : L, H

Apprentissage
Choxducont 1 (y,s) = — In (softmax (s) [y])
; -
Optimisation @7 = arg min Z — In (softmax (MLP (Xtrain,i; 0)) [Ytrain,i])
o =1

, . N* - 23
Inférence Stest = MLP (xtesta 0 ) Classe prédite : arg max Stest
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« Cross-entropy » a deux classes vs « Binary cross-entropy »

v, C
R (2
X s & R y € {0,1}
/ S
« Cross-entropy » CE(S7 y) _ —ln(py) ol D; = Ce_le <S7,>

Zc:O eXp (SC)

24
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« Cross-entropy » a deux classes vs « Binary cross-entropy »

0 C
X ¢ s & R? f y €{0,1}
el ol -
« Cross-entropy » CE(S7 y) _ —ln(py) ol D; = Ce_le <S7,>
Zc:O exXp (SC)
0 C
X # s € R $ y € {0,1}
g f — " [ il « sigmoide »
AL
- 1 ™~
« Binary cross-entropy »  —yln(p) — (1 — y)In(1 —p) ot p= e S .
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« Cross-entropy » a deux classes vs « Binary cross-entropy »

0 C
X ¢ s & R? f y €{0,1}
el ol -
« Cross-entropy » CE(S7 y) _ —ln(py) ol D; = Ce_le <S7,>
Zc:O exXp (SC)
0 C
X # s € R $ y € {0,1}
g f — " [ il « sigmoide »
AL
- 1 ™~
« Binary cross-entropy »  —yln(p) — (1 — y)In(1 —p) ot p= e S e
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Choix du colt I(y,s): Combinaison de co(ts

‘N

L

S, lyr=s 5 [« y, € R"
>< ~
S < 9. € {0,1,...

C CE(sc, yc)

Exemple : classification et régression conjointe
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Choix du colt I(y,s): Combinaison de co(ts

‘N

L

.
s\ vl allye-s 3 ey, ER

>s<4 ~

C (1-7)CE(s.,5.) [+ Yo €40,1,...

Exemple : classification et régression conjointe
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Optimisation des paramétres
N

0" = argmin L (@) = arg minz | (Yerain,is f (Xtrain,i; 0))
o o =1

o0 P50 = fu (froa (fo (i (x:69):6P) ;0071 ;010)

29
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Optimisation des parameétres
N

0" = argmin L (0) = arg min Z | (Yerain,is f (Xtrain,i; 0))
o o =1

oo 160 =fu (fro1 (o (£ (x:00);09) . 0%7D) 08

Descente de gradient Ori 1 =0, —«

Pas d’apprentissage (« learning rate » en anglais) 30
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Calcul du gradient

Objectif

Calculer le gradient de la fonction de co(t par rapport aux parametres du réseau de neurones.

31
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Calcul du gradient

Objectif

Calculer le gradient de la fonction de co(t par rapport aux parametres du réseau de neurones.

Comment faire ?

Un réseau de neurones est une

!

Application du (« »).

L'implémentation qui en résulte s'appelle la (« »)
32
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Calcul du gradient

Rappel : Théoréme de dérivation des fonctions composées

s=g(f(x)) avec s =g(y) et y = f(x)
1x N 1 x M 1x1
X ! y g S
Remarque importante : 'objectif est de dériver le , c'est-a-dire

33
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Rappel : Théoréme de dérivation des fonctions composées

Calcul du gradient

S = g(f(X)) avec S = g(Y) et y = f(X)
1x N f 1x M 1x1
— —
X Yy J S
ds | 0s %
X1<\ /D X2 Oxg Oy ly=f(x) 0Xa
s 0s Jy2
J +<9,V2 y=Ff(x) 0Xa
95 AL
Jy3 ly=f(x) 0x2

Exemple
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Calcul du gradient

Rappel : Théoréme de dérivation des fonctions composées

S = g(f(X)) avec S = g(Y) et y = f(X)
1x N f 1x M g 1x1
X y S
ds | 0s Oy1
X1<\ /D X2 Oxg Oy ly=f(x) 0Xa A
. 0s Jy- 0s _ ﬁ 8}’]
f +a—y‘2 y:f(x)a—XQ aXz ; aYJ Y—f(x) axz
95 AL
0y3 ly=f(x) 0%

Exemple

Formule : dérivation élément par élément

35



\/))

Calcul du gradient (suite)

Rappel : Théoréme de dérivation des fonctions composées

s =g(f(x))

- 0s - T Z
8X1
S
0s Bx3 >
— = Os =
0x %3 S

avec
M 0s 0y ;
M Js 0y ;
M 0s oy j
71=1 3yj

y=F(x) %3

s =g(y)

T

0s
Oy1

Js
02 ly=f(x)

y=f(x)

et

T

y = f(x)
5)’1 3}’1 83’1
B, p) B
Oys dys Oy s 8f(x)
8X2 8)(3

8x1

, N ?_y y=f(x) Ox B

if(xag_; |y:f(x))

36
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Calcul du gradient (suite)

Rappel : Théoréme de dérivation des fonctions composées

0s
0x

0s

s =g(f(x))

- 0s -

8X1
S

ox
332

8X3

T

avecC
[~M  9s 9y;
ijl dy ; y=f(x) 2X1
M 9s 9y,
25=1 7y, y=f(x) zxz
M 9s 9y,
Zg:l oy ; y=F(x) 0x3
.. 99(y)
oy
N——
=g(y,1)

s =g(y)

T

0s
Oy1

Js
02 ly=f(x)

y=f(x)

et

T

Oy1

y = f(x)

Oy1

Oy1

8X1 8X2 8X3
dy> Jdya Oy 0s 0f(x)
8X2 8)(3

8x1

, N ?_y y=f(x) Ox B

if(xag_; |y:f(x))

37
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Calcul du gradient (suite)
Rappel : Théoréme de dérivation des fonctions composées

S = g(f(X)) avec S = Q(Y) et Y = f(X)

- 4T
M Hs oy
— 9s 4 | Zj:l dy ; — £ (x) 0x1 [ 9s 9T
91 Y= 5 Oy1 Oyr1  Oyr ..,
S ZM 9s % Y1 y=f(x) 0x1 0x2 0x3
0s %2 J=1 0y, |,_ 0x2 Os 9y2 Oy2 Oy2 | ds df(x)
— =% = y=/x) = |3 ox1 0x» Oxs = =
Ox Bx3 M s 9y Y2 ly=f(x) : . Jy ly=f(x) 0x
j=1 Oy; y=F(x) 0x3 ) . — — _
L . . | _ if(xag_;|y:f(x))

o %

os _ |2 _ | oey) Os &, .
oy e y A f (Xag (Y7 1))
: =g(y,1) ﬁ aX

Composition de fonctions
38
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Calcul du gradient (suite)
Rappel : Théoréme de dérivation des fonctions composées

S = g(f(X)) avec S = g(Y) et Y = f(X)

1x N 1 x M 1x1
X f Yy g S
0s

39
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Calcul du gradient (suite)
Rappel : Théoréme de dérivation des fonctions composées

S = g(f(X)) avec S = g(Y) et Y = f(X)

1 x N f 1 x M q 1x1
Ds . ) | X y S
ox ~ oy ly=f(x)  ~ 1
IxN f ‘1><yM J 1x1

Réseau « miroir »

40
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Calcul automatique du gradient du MLP

MEORNEY W®) ) W) p@) c
. el FC FC FC <
' — (0 RV ) ® T2 11 Rl IOy (D) _ o l y
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Calcul automatique du gradient du MLP

oc Odc oc oc oc oc
W)’ 9b(1) o)’ ob3) OW(L)” 9b(L)
oc * Jdc Jc * oc Oc oc * Oc
0x(0) ox(1) 0x(2) 0x(3) Ox(L—2) Ox(L—1) Os N
< | FC € — co. 4 |RIUl®e | FC l@«&— | <T

} f

d . pm a0 p®)
e — . ReLU FC
' — x0 < <(1-2) LD <) — g
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Calcul automatique du gradient

o) e o(L—1) L) y
AR y T y T v v v
Lo J1 FORg Jo FORR ’>X(L_2) fr—1 = JL e B v
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Calcul automatique du gradient

Oc oc oc Jc

‘Differentiable Programming’
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Calcul automatique du gradient (suite)

8L(9 ’ i al Ytrain,ia f (Xtrain,i; H)) ‘
00 le=ao, 00 0=0,

1=1

Le plus économe en mémoire : on calcule les gradients I'un aprés 'autre en les accumulant.

oc oc oc oc oc oc
ow)’” ob1) oW®’ ob(3) WD)’ ob@D)
Oc oc Oc A Oc Oc Oc A dc
Ix(0) ox(1) 9x(2) ox(3) Ox(L—2) 0x(L—1) ds
| FC RelU|®—| FC |€4—— -+ <€—ReLU [®— FC
i i
ERReEY W p® (@ p@D) X I\
e/l | A il Ay ot ottty At ) il
1
. 1 -l FC L ReLU|—LB FC |/ - — L el ReLU |2 FC | L]
X = Xtrain,i X = x(©) x(D x( x® x(L=2) «(L—1) <) — g
|
1

............................................................... ' 45
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Calcul automatique du gradient (suite)

8L(9 ’ i al Ytrain,iaf(xtrain,i;g))‘
00 le=ao, 00 0=0,

1=1

Le plus rapide : on calcule tous les gradients en parallele, puis on les somme.

oc oc oc oc oc oc
W)’ ob) OB’ obB) W)’ gb(L)

dc A e e A O dc oc A o
0x(0) ox(1) ox(2) ox(3) OX(L—2) 9x(L—1) 75

@ p® W® b W@ pE c

RV b A A Ty ey
1

X — Xtrain :X: X!o) FC x(1) ReL.U x(2) ke x(® x(L—2) ReL.U x(L—D) FC x(L) —g l
1

X 1

46
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Initialisation des paramétres

La méthode la plus utilisee consiste a initialiser les parameéetres des FC aléatoirement
(distribution normale ou uniforme).

6
_U[—l,l] (noutanin) by =

Nin

Kaiming init. Wo =

He, K., et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." ICCV 2015.

D’autres méthodes existent mais sont moins utilisées (car la préecédente fonctionne
bien en pratique).

Mishkin, D., & Matas, J. All you need is a good init. 2015

47
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Apprendre sur une grande base de données annotées

Ntraln

al Y rain 1,7 X rain ’L7 0
b =00 350 f im0
—VUk

Descente de gradient
(GD)

48
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Apprendre sur une grande base de données annotées

N
iy al Y rain ’L? f X rain 'L? 0
Descente de gradient  Ok+1 =0k — Z t 89( t ) ’9_9
(GD) : ot
Descente de gradient Ol (Yerain.is f (Xtrain,i; @))
stochastique (SGD) : Ort1 =0k — Z BY:) |9:9k

1€

|

Tirage aléatoire, a chaque itération, de |Qk|

éléments dans la base de données
49
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Apprendre sur une grande base de données annotées (suite)

Descente de gradient Ol (Yerain,is f (Xtrain,i; €))
0,1 =0, — ‘
k1 =0 — Z 90 oo,

stochastique (SGD) :
1€
12345678 12345678
Yirain 1) Découper aléatoirement
Xtrain la base de données en |(}, |

« minibatches » de taille

50
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Apprendre sur une grande base de données annotées (suite)

Descente de gradient Ol (Yerain.is f (Xtrain. i3 @))
- | Ori1 =0, — Z ‘
stochastique (SGD) : . o6 9—0,
1€
12345678 12345678
Ytrain 1) Découper aléatoirement
Xtrain la base de données en ‘Q ‘

« minibatches » de taille

51
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Apprendre sur une grande base de données annotées (suite)

Descente de gradient Ol (Yerain.is f (Xtrain. i3 @))
- | Ori1 =0, — Z ‘
stochastique (SGD) : . o6 9—0,
1€
12345678 12345678
Ytrain 1) Découper aléatoirement
Xtrain la base de données en ‘Q ‘

« minibatches » de taille

2) Faire une itération de SGD sur
chaque « minibatch »

52
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Apprendre sur une grande base de données annotées (suite)

Descente de gradient Ol (Yerain.is f (Xtrain. i3 @))
- | Ori1 =0, — Z ‘
stochastique (SGD) : . o6 9—0,
1€
12345678 12345678
Ytrain 1) Découper aléatoirement
Xtrain la base de données en ‘Q ‘

« minibatches » de taille

2) Faire une itération de SGD sur
chaque « minibatch »

53

Minibatch 1
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Apprendre sur une grande base de données annotées (suite)

Descente de gradient Ol (Yerain.is f (Xtrain. i3 @))
0 - - ‘
k+1 = 0 — Z 90 oo,

stochastique (SGD) :
1€
12345678 12345678
Ytrain 1) Découper aléatoirement
Xtrain la base de données en |(}, |

« minibatches » de taille

2) Faire une itération de SGD sur
chaque « minibatch »

54
Minibatch 1 Minibatch 2



\/))

Apprendre sur une grande base de données annotées (suite)

Descente de gradient Ol (Yerain.is f (Xtrain. i3 @))
0 - - ‘
k+1 = 0 — Z 90 oo,

stochastique (SGD) :
1€
12345678 12345678
Ytrain 1) Découper aléatoirement
Xtrain la base de données en |(}, |

« minibatches » de taille

2) Faire une itération de SGD sur
chaque « minibatch »

55
Minibatch 1 Minibatch 2 Minibatch 3
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Apprendre sur une grande base de données annotées (suite)

Descente de gradient Ol (Yerain.is f (Xtrain. i3 @))
0 - - ‘
k+1 = 0 — Z 90 oo,

stochastique (SGD) :
1€
12345678 12345678
Une « epoch » :
Ytrain 1) Découper aléatoirement
Xtrain la base de données en |(}, |

« minibatches » de taille

2) Faire une itération de SGD sur
chaque « minibatch »

N N . 3) Finde I’ « epoch », allera 1) 56
Minibatch 1 Minibatch 2 Minibatch 3
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Avantages et inconvénients de la SGD

Z al (Ytrain,i7 f <Xtrain,i; 9)) ‘ _ Nia:in 81 (Ytrain,ia f (Xtrain,i; 0)) ‘ . Z al (Ytrain,ia f (Xtrain,i; 9))

1€, 96 9=0 i=1 00 =0 ¢ 00 0=0}
Gradient SGD Gradient GD « bruit »
(« minibatch ») (« base de données »)

57
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Avantages et inconvénients de la SGD

Ntrain

Z ol (Ytrain,z’> f <Xtrain,i§ 9)) ‘ _ Z ol (Ytrain,ia f (Xtrain,i; 0)) ‘ B Z ol (Ytrain,z’; f (Xtrain,z’§ 9))

1€, 96 9=0 i=1 00 =0 ¢ 00 0=0}
Gradient SGD Gradient GD « bruit »
(« minibatch ») (« base de données »)

Inconvénient :

58
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Avantages et inconvénients de la SGD

Ntrain

Z ol (Ytrain,z’> f <Xtrain,i§ 9)) ‘ _ Z ol (Ytrain,ia f (Xtrain,i; 0)) ‘ B Z ol (Ytrain,z’; f (Xtrain,z’§ 9))

1€, 96 9=0 i=1 00 =0 ¢ 00 0=0}
Gradient SGD Gradient GD « bruit »
(« minibatch ») (« base de données »)

Inconvénient :

Avantage 1 :

59
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Avantages et inconvénients de la SGD

Ntrain

Z ol (Ytrain,z’> f <Xtrain,i§ 9)) ‘ _ Z ol (Ytrain,ia f (Xtrain,i; 0)) ‘ B Z ol (Ytrain,z’; f (Xtrain,z’§ 9))

1€, 96 9=0 i=1 00 =0 ¢ 00 0=0}
Gradient SGD Gradient GD « bruit »
(« minibatch ») (« base de données »)

Inconvénient :

Avantage 1 :

Avantage 2 :

60
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Avantages et inconvénients de la SGD

Z ol (Ytrain,z’> f <Xtrain,i; 8» ‘ — Nia:in 0l (Ytrain,ia f (Xtrain 17 ‘ . Z al Ytram ,49 f (Xtram i 0))

i€Qy 96 =0k i=1 00 0=0x i 0=0;,
Gradient SGD Gradient GD « bruit »
(« minibatch ») (« base de données »)

Inconvénient :

Avantage 1 :
Avantage 2 :

Avantage 3 (empirique) :

61
Keskar, N, et al. "On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima.", ICLR 2017
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Avantages et inconvénients de la SGD

Ntrain

al (Ytrain,i7 f <Xtrain,i; 9)) . 81 (Ytrain,ia f (Xtrain z; al Ytraln ,09 f (Xtraln i 0))
iezQ:k 06 ‘e:ek B ; L) ‘9 0, Z%;k 0=0,
Gradient SGD Gradient GD « bruit »
(« minibatch ») (« base de données »)

En pratique, on choisit une taille de « minibatch » de maniére a occuper entierement le GPU.

62
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Avantages et inconvénients de la SGD

Ntrain

Z ol (Ytrain,z’> f <Xtrain,i§ 9)) ‘ _ Z ol (Ytrain,ia f (Xtrain,i; 0)) ‘ B Z ol (Ytrain,z’; f (Xtrain,z’§ 9))

1€, 96 9=0 i=1 00 =0 ¢ 00 0=0}
Gradient SGD Gradient GD « bruit »
(« minibatch ») (« base de données »)

En pratique, on choisit une taille de « minibatch » de maniére a occuper entierement le GPU.
Si on a besoin d’'un « minibatch » plus grand...

* on peut faire de 'accumulation de gradient, c’est-a-dire faire plusieurs « forward » + « backward »

63
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Avantages et inconvénients de la SGD

Ntrain

al (Ytrain,i7 f <Xtrain,i; 9)) . 81 (Ytrain,ia f (Xtrain z; al Ytraln ,09 f (Xtraln i 0))
iezQ:k 06 ‘e:ek B ; L) ‘9 0, Z%;k 0=0,
Gradient SGD Gradient GD « bruit »
(« minibatch ») (« base de données »)

En pratique, on choisit une taille de « minibatch » de maniére a occuper entierement le GPU.
Si on a besoin d’'un « minibatch » plus grand...
* on peut faire de 'accumulation de gradient, c’est-a-dire faire plusieurs « forward » + « backward »

* ou on peut utiliser plusieurs GPUs qui traitent des « minibatches » en paralléle !
64



VI)

Apprendre a « bien » prédire... sur de nouvelles données

Ytraln 6" = arg min Lirain (0)
Xtraln o

[ (ynew, f (Xnew§ 0))

Sur-apprentissage

Ntrain

Ltrain (0) — Z [ (Ytrain,i7 f (Xtrain,z’; 9))

1=1

epochs

' 65
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Apprendre a « bien » prédire... sur de nouvelles données (suite)

Xtrain Xvalid

A
Nf:id
Lyatia (0) = [ (Yvatid,i» f (Xvatid,i; 0))
- i=1
Ntrain
Ltrain (9) — Z [ (Ytrain,’i7 f (Xtrain,i; 0))
: - i=1

epochs 66

Arrét premature / Early stopping



VI)

Résumé de I'étape d’apprentissage

1) Découper une fois pour toutes la base de données en

une base d'apprentissage (« training set »)

Ytraln

une base de validation (« validation set »)

Xtram

vahd

vahd

67



VI)

Résumé de I'étape d’apprentissage

1) Découper une fois pour toutes la base de données en

une base d'apprentissage (« training set »)

Ytrain Yvalid

Xtrain Xvalid
2) Lancer une descente de gradient stochastique (SGD) avec arrét prémature

une base de validation (« validation set »)

Au début d'une « epoch », découper la base d'apprentissage aléatoirement en  « minibatches »

8[ Ytraln 49 f (Xtraln i 0))
00 0=0,

Faire une itération de SGD sur chaque « minibatch » 1 @g11 = 0 — @ Z
1€Q

Nvalid

Ala fin d'une « epoch », calculer  Lyanq (@) = Z l (Yvalid,i> f (Xvalid,i; 0))

Stocker la valeur actuelle de @ sile cotit de validation est plus faible que le précédent meilleur colit

Stopper I'entrainement lorsqu’on est en régime de « sur-apprentissage » .
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Bonnes pratiques

* Lancer un apprentissage sur un seul « minibatch » jusqu’a obtention d’'un co(t
d’apprentissage de zéro

69
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Bonnes pratiques

* Lancer un apprentissage sur un seul « minibatch » jusqu’a obtention d’'un co(t
d’apprentissage de zéro

* Visualiser tout ce qu'il est possible de visualiser
- Entrées — plage de valeurs (erreur classique : les données ne sont pas normalisées)
- Sorties
- Valeurs des parametres
- Valeur du pas d'apprentissage
- CoUts (d'apprentissage, de validation, ...)

- (Cradients
70
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Définir la valeur du pas d’apprentissage

8[ Yraln fL, Xram ’1/79
9k+1—9k_042 t AL )

Pred 00 0=0,,
Pas d’apprentissage
A A
//
L(0) L(6)
> >
7] 6

Pas d’apprentissage trop grand Pas d’apprentissage trop petit -
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Définir la valeur du pas d’'apprentissage (suite)

Solution 1 (la plus utilisée) : Tester différentes valeurs du pas d’apprentissage (« grid search ») en
visualisant a chaque fois I'évolution du colt d’apprentissage (et du colt de validation)

72
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Définir la valeur du pas d’'apprentissage (suite)

Solution 1 (la plus utilisée) : Tester différentes valeurs du pas d’apprentissage (« grid search ») en
visualisant a chaque fois I'évolution du colt d’apprentissage (et du colt de validation)

Colt
Solution 2 (rarement utilisée) : d'apprenfissage

. : . : explosion
* Lancer un entrainement en partant d'un pas tres faible plateau P

(e.g. 1le-7/).

* Achaque itération (i.e a chaque minibatch), augmenter

le pas.
P descente
* Reécupérer la valeur du pas correspondant au gradient

le plus négatif. >
Pas d’apprentissage

73
Smith, L. N. "Cyclical learning rates for training neural networks.", WACV 2017



VI)
Evolution du pas d’apprentissage durant 'optimisation

Leaming rate schedule

10°

* (Constant

* Deécroissant

!

° i %
Cyclique ®
£ 3

g 10

* Reéduction sur plateau

20 40 60 20 100 120 140 160 180
Epochs

error (%)

Loshchilov, I., & Hutter, F. "SGDR: Stochastic gradient descent with warm restarts" 2016

30 ______________________ v___

74

o 20 30 40 50
iter. (led)
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SGD avec moment (« SGD with momentum »)

(91 Yrajnqj, Xraini;o
gk+1:Z srainyir / Ktrani; 6)

_ 00 |9:9k
Or+1 = 0 — agri1

75
Source : https:/image.slidesharecdn.com/
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SGD avec moment (« SGD with momentum »)

(9[ Yrajnqj, Xraini;a
gk+1zz srainyir / Ktrani; 6)

, 00 |9:9k
Or+1 = 0 — agri1

SGD avec moment @
al Y rain.is X rain, s 0
gk4+1 — Z ( S f( — ))

00 0=0,

1€,
my1 = Smy + (1 — B) 8r+1

Ort1 =0, —amyq »

Source : https:/image.slidesharecdn.com/
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SGD avec moment (« SGD with momentum »)

81 Yra,inz'a Xraini;g
gk:+1=z sroinyis / Kireinys; 6))

_ 00 |9:9k
Or+1 =0 — agri1

SGD avec moment @
8[ Y rain.is X raini;a
8k+1 — Z ( M f( — ))

00 0=0,

1€

mpgi1 = fmy, + (1 - 5) gt+1 <« Moyenne mobile exponentielle du gradient
(permet de « lisser » le gradient)

Ort1 =0, —amyq -

Source : https:/image.slidesharecdn.com/
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« Adam: A Method for Stochastic Optimization »

({ﬂ (Ytrain,i7 f (Xtrain,i; 9))
Bk+1 = Z 00 |e:ek

1€
1
Mgt+1 = 1 — gk (Bimg + (1 — B1) 8k+1)
1
1
Vil = = (Bavie + (1= B2) 8iiy1)

1 — 535

mpg_ 1 Carré de chaque élément de 8k

VVk+1 T €
\

Racine carrée de chaque élément de VL1

Hk—I—l :Hk —

78
Kingma, D. P, & Ba, J. L. (2015). Adam: A method for stochastic gradient descent. In ICLR: International Conference on Learning Representations.
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Autres techniques de régularisation

Régularisation : technique permettant de réduire le sur-apprentissage

Exemple déja vu — « Early Stopping »

79
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Autres techniques de régularisation

Régularisation : technique permettant de réduire le sur-apprentissage
Exemple déja vu = « Early Stopping »
« Dropout » d’'une couche FC

Lors de I'entrainement, mettre aléatoirement p % des colonnes de W a zéro
(équivaut a mettre a zéro aléatoirement p % des « neurones » d’entrée)

80
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Autres techniques de régularisation

Régularisation : technique permettant de réduire le sur-apprentissage
Exemple déja vu = « Early Stopping »
« Dropout » d’'une couche FC

Lors de I'entrainement, mettre aléatoirement p % des colonnes de W a zéro
(équivaut a mettre a zéro aléatoirement p % des « neurones » d’entrée)

« Weight decay »
9L()
00 lo=6)

Hk—l—l = Hk — — >\9k

— AdamW

81
Loshchilov, I., Hutter, F. (2019). Decoupled Weight Decay Regularization. In ICLR: International Conference on Learning Representations.
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A priori un tel apprentissage ne devrait PAS fonctionner

Ntrain
0" = argmin Liyain (6) = argmin Y I (Yerain,i, f (Xerain,is 0))
0 7] .
1=1

oo 10c0) = fr (fror (fo (£ (x:0) :0¢)) ;000 ;o)

Raisonnement a priori

descente de gradient ou
est non-convexe

'

mauvais minimum local

82
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A priori un tel apprentissage ne devrait PAS fonctionner

Ntrain
0" = argmin Liyain (6) = argmin Y I (Yerain,i, f (Xerain,is 0))
0 0 ,
1=1

oo J(x0)=[1 (fL—l (---f2 (fl (X;H(l)) ;9(2)> ...;H(L_l)) ;9(L>)

_ o Résultats empiriques sur CIFAR10
Raisonnement a priori e
o m»—a true labels
descente de gradient ou & 2.0f e—e random labels |
_ 2 #x shuffled pixels
f est non-convexe § 1.5k random pixels |
¢ o) gaussian
5 1.0}
mauvais minimum local 3 o5l
0.0 /
0 5 10 15 20 25 83

Zhang. C et al. (2017). Understanding Deep Learning
requires rethinking generalization. ICLR
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A priori un tel apprentissage ne devrait PAS fonctionner (suite)

Raisonnement a priori

Colt d’apprentissage atteint zéro

'

Le réseau a appris « par coeur » a
associer la bonne étiquette pour
chaque exemple de la base
d’apprentissage

Les performances de généralisation
seront trés mauvaises

84
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A priori un tel apprentissage ne devrait PAS fonctionner (suite)

Raisonnement a priori

Colt d’apprentissage atteint zéro

'

Le réseau a appris « par coeur » a
associer la bonne étiquette pour
chaque exemple de la base
d’apprentissage

Les performances de généralisation
seront trés mauvaises

Zhang. C et al. (2017). Understanding Deep Learning requires
rethinking generalization. ICLR

Colt de validation

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Résultats empiriques sur CIFAR10

m—8 |nception
o—o AlexNet
wte  MLP 1x512

0.0 0.2 0.4 0.6 0.8

1.0

Taux de fausses étiquettes dans la

base d’apprentissage

Apprentissage avec de
fausses étiquettes

CIFAR10 — 10 classes
Résultat attendu : Le réseau
a appris a partir de fausses
étiquettes donc il obtient de
mauvaises performances
quand on lui présente des
exemples avec les vraies
étiquettes.

85
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A priori un tel apprentissage ne devrait PAS fonctionner (suite)

Raisonnement a priori

Colt d’apprentissage atteint zéro

'

Le réseau a appris « par coeur » a
associer la bonne étiquette pour
chaque exemple de la base
d’apprentissage

Les performances de généralisation
seront trés mauvaises

Zhang. C et al. (2017). Understanding Deep Learning requires
rethinking generalization. ICLR

Résultats empiriques sur CIFAR10

Apprentissage avec de

1.0 / fausses étiquettes

O mmm e === === = gl CIFAR10 — 10 classes

0.8 Résultat attendu : Le réseau

' a appris a partir de fausses

< 0.7 étiquettes donc il obtient de
S 0.6 mauvaises performances
o quand on lui présente des
g 0.5 exemples avec les vraies
g - étiquettes.
g o m—a |nception k
3 9B o—o AlexNet

0)2 w—x MLP 1x512 |7

0.4

0.2 0.4 0.6 0.8 1.0

Taux de fausses étiquettes dans la
% base d’apprentissage

Apprentissage avec les vraies étiquettes
> 86
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A priori un tel apprentissage ne devrait PAS fonctionner (suite)

Comment se fait-il que I'étape d’apprentissage ait permis de trouver un minimum global qui généralise bien
(sachant gu'il existe des minima globaux qui généralisent mal) ?

1) Biais introduit par I'architecture (« inductive bias »)

2) Biais introduit par la descente de gradient stochastique

https:/guillefix.me/nnbias/
https:/hackmd.io/75gt3X6WQbul_A3pF8svWg
Valle-Pérez. G et al. (2019). Deep learning generalizes because the parameter-function map is biased towards simple functions. ICLR

Smith, S., et al. (2021). On the origin of implicit regularization on stochastic gradient descent. ICLR 87


https://guillefix.me/nnbias/
https://hackmd.io/75gt3X6WQbu1_A3pF8svWg
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Résumé des ingrédients du « Deep Learning »

1) Grande base de données étiquetées

2) « Bonne » architecture de réseau de neurones profond

h« Perceptron » multicouche, Réseau de neurones a convolution, Transformer

3) Grande capacité de calculs en paralléle (GPU)

88



