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VI) Apprentissage des paramètres 
d’un réseau de neurones
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Choix du coût              : Régression        

VI)
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Choix du coût              : Régression        

– Erreur quadratique

– Somme des valeurs absolues 

                    

VI)
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Choix du coût             : Classification        

VI)

On prédit un score par classe !
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Choix du coût             : Classification        

VI)

« Cross-entropy »                                               
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Choix du coût             : Classification        

VI)

« softmax »

« Cross-entropy »                                              où 
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Choix du coût             : Classification        

VI)

-2,4

3,1

0,7

1,4

softmax

« softmax »

« Cross-entropy »                                              où 
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Choix du coût             : Classification        

VI)

-2,4

3,1

0,7

1,4

0,003

0.783

0.071

0.143

softmax

« softmax »

« Cross-entropy »                                              où 
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Choix du coût             : Classification        

VI)

-2,4

3,1

0,7

1,4

0,003

0.783

0.071

0.143

softmax

« softmax »

« Cross-entropy »                                              où 
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Choix du coût             : Classification        

VI)

-100

-100

100

-100

0

0

1

0

softmax

« softmax »

Exemple : prédiction « parfaite »

« Cross-entropy »                                              où 
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Choix du coût             : Classification        

« Cross-entropy »                                              où 

        

VI)

100

-100

-100

-100

1

0

0

0

softmax

« softmax »

Exemple : prédiction «très mauvaise»
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Exemple de classification : 5 données,             et            

VI)
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Choix de la fonction

Exemple de classification : 5 données,             et            

VI)

FC FCFC
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Choix de la fonction

Exemple de classification : 5 données,             et            

VI)

FC FCFC

Problème : on souhaite prédire une valeur 
discrète, mais la sortie du MLP est continue.
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Choix de la fonction

Exemple de classification : 5 données,             et            

VI)

FC FCFC

Problème : on souhaite prédire une valeur 
discrète, mais la sortie du MLP est continue.

Solution : on prédit un score par classe, et la 
classe prédite sera celle du score maximum.
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Choix de la fonction

hyper-paramètres : 

Exemple de classification : 5 données,             et            

L=2, H=300

VI)

FC FCFC
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Choix de la fonction

Choix du coût

Apprentissage

hyper-paramètres : 

Exemple de classification : 5 données,             et            

VI)

FC FCFC

« Cross-entropy »
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Choix de la fonction

Choix du coût

Apprentissage

Optimisation

hyper-paramètres : 

Exemple de classification : 5 données,             et            

VI)

FC FCFC
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Choix de la fonction

Choix du coût

Apprentissage

Inférence

Optimisation

hyper-paramètres : 

Exemple de classification : 5 données,             et            

Classe prédite : 

VI)

FC FCFC
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Choix de la fonction

Choix du coût

Apprentissage

Inférence

Optimisation

hyper-paramètres : 

Exemple de classification : 5 données,             et            

Classe prédite : 

VI)

FC FCFC

L=3, H=30
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« Cross-entropy » à deux classes vs « Binary cross-entropy » 

VI)

« Cross-entropy »                                              où 
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« Cross-entropy » à deux classes vs « Binary cross-entropy » 

VI)

« Binary cross-entropy »                                                                où 

        

« sigmoïde »

« Cross-entropy »                                              où 
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« Cross-entropy » à deux classes vs « Binary cross-entropy » 

VI)

« Binary cross-entropy »                                                                où 

        

« sigmoïde »

Strictement équivalent !
Juste une question 
d’implémentation.

« Cross-entropy »                                              où 
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Choix du coût             : Combinaison de coûts        

VI)

Exemple : classification et régression conjointe

Permet à un réseau d’apprendre à réaliser plusieurs tâches.
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Choix du coût             : Combinaison de coûts        

VI)

Pondération pour 
« équilibrer » les coûts

Exemple : classification et régression conjointe

Permet à un réseau d’apprendre à réaliser plusieurs tâches.
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Optimisation des paramètres

où

VI)
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Optimisation des paramètres

où

Descente de gradient

Pas d’apprentissage (« learning rate » en anglais)

VI)
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Calcul du gradient 

Objectif

Calculer le gradient de la fonction de coût par rapport aux paramètres du réseau de neurones.

VI)
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Calcul du gradient 

Objectif

Calculer le gradient de la fonction de coût par rapport aux paramètres du réseau de neurones.

Comment faire ?

 Un réseau de neurones est une composition de fonctions.

Application du théorème de dérivation d’une fonction composée (« chain rule »).

VI)

L’implémentation qui en résulte s’appelle la rétropropagation du gradient  (« backpropagation »)
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Calcul du gradient 
Rappel : Théorème de dérivation des fonctions composées

avec                                       et

VI)

Remarque importante : l’objectif est de dériver le coût, c’est-à-dire un scalaire.
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Calcul du gradient 
Rappel : Théorème de dérivation des fonctions composées

avec                                       et

VI)

Exemple
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Calcul du gradient 
Rappel : Théorème de dérivation des fonctions composées

avec                                       et

VI)

Exemple

Formule : dérivation élément par élément
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Calcul du gradient (suite) 

VI)

Rappel : Théorème de dérivation des fonctions composées

avec                                       et
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Calcul du gradient (suite) 

VI)

Rappel : Théorème de dérivation des fonctions composées

avec                                       et
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Calcul du gradient (suite) 

VI)

Rappel : Théorème de dérivation des fonctions composées

avec                                       et

Composition de fonctions
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Calcul du gradient (suite) 

VI)

Rappel : Théorème de dérivation des fonctions composées

avec                                       et
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Calcul du gradient (suite) 

VI)

Rappel : Théorème de dérivation des fonctions composées

avec                                       et

Réseau « miroir »
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Calcul automatique du gradient du MLP

VI)

Propagation avant (“Forward”)
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Calcul automatique du gradient du MLP

VI)

Propagation avant (“Forward”)

Rétropropagation (“Backward”)
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Calcul automatique du gradient

Propagation avant (“Forward”)

VI)
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Calcul automatique du gradient

“Differentiable Programming”
Propagation avant (“Forward”)

Rétropropagation (“Backward”)

VI)
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Calcul automatique du gradient (suite)

VI)

Implémentation

Le plus économe en mémoire : on calcule les gradients l’un après l’autre en les accumulant.

Propagation avant (“Forward”)

Rétropropagation (“Backward”)
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Calcul automatique du gradient (suite)

VI)

Implémentation

Le plus rapide : on calcule tous les gradients en parallèle, puis on les somme.

Propagation avant (“Forward”)

Rétropropagation (“Backward”)
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Initialisation des paramètres

● La méthode la plus utilisée consiste à initialiser les paramètres des FC aléatoirement 
(distribution normale ou uniforme).

● D’autres méthodes existent mais sont moins utilisées (car la précédente fonctionne 
bien en pratique).

Kaiming init.

He, K., et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." ICCV 2015.

Mishkin, D., & Matas, J. All you need is a good init. 2015

VI)
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Apprendre sur une grande base de données annotées

Descente de gradient 
(GD) :

VI)
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Apprendre sur une grande base de données annotées

Descente de gradient 
(GD) :

Descente de gradient 
stochastique (SGD) :

Tirage aléatoire, à chaque itération, de 
éléments dans la base de données

VI)
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Apprendre sur une grande base de données annotées (suite)

Descente de gradient 
stochastique (SGD) :

1) Découper aléatoirement 
la base de données en 
« minibatches » de taille

VI)

1  2  3  4  5  6  7  8 1  2  3  4  5  6  7  8
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Apprendre sur une grande base de données annotées (suite)

Descente de gradient 
stochastique (SGD) :

1) Découper aléatoirement 
la base de données en 
« minibatches » de taille

VI)

1  2  3  4  5  6  7  8 1  2  3  4  5  6  7  8
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Apprendre sur une grande base de données annotées (suite)

Descente de gradient 
stochastique (SGD) :

1) Découper aléatoirement 
la base de données en 
« minibatches » de taille

2)  Faire une itération de SGD sur 
chaque « minibatch »

VI)

1  2  3  4  5  6  7  8 1  2  3  4  5  6  7  8
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Apprendre sur une grande base de données annotées (suite)

Descente de gradient 
stochastique (SGD) :

1) Découper aléatoirement 
la base de données en 
« minibatches » de taille

2)  Faire une itération de SGD sur 
chaque « minibatch »

VI)

1  2  3  4  5  6  7  8 1  2  3  4  5  6  7  8

1  5  8 1  5  8

Minibatch 1
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Apprendre sur une grande base de données annotées (suite)

Descente de gradient 
stochastique (SGD) :

1) Découper aléatoirement 
la base de données en 
« minibatches » de taille

2)  Faire une itération de SGD sur 
chaque « minibatch »

VI)

1  2  3  4  5  6  7  8 1  2  3  4  5  6  7  8

1  5  8 1  5  8 2  4  7 2  4  7

Minibatch 1 Minibatch 2
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Apprendre sur une grande base de données annotées (suite)

Descente de gradient 
stochastique (SGD) :

1) Découper aléatoirement 
la base de données en 
« minibatches » de taille

2)  Faire une itération de SGD sur 
chaque « minibatch »

VI)

1  2  3  4  5  6  7  8 1  2  3  4  5  6  7  8

1  5  8 1  5  8 2  4  7 2  4  7 3  6 3  6 

Minibatch 1 Minibatch 2 Minibatch 3
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Apprendre sur une grande base de données annotées (suite)

Descente de gradient 
stochastique (SGD) :

Une « epoch » :

1)  Découper aléatoirement 
la base de données en 
« minibatches » de taille

2)  Faire une itération de SGD sur 
chaque « minibatch »

3)  Fin de l’ « epoch », aller à 1)

VI)

1  2  3  4  5  6  7  8 1  2  3  4  5  6  7  8

1  5  8 1  5  8 2  4  7 2  4  7 3  6 3  6 

Minibatch 1 Minibatch 2 Minibatch 3
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Avantages et inconvénients de la SGD

VI)

Gradient SGD 
(« minibatch »)

Gradient GD
 (« base de données »)

« bruit »
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Avantages et inconvénients de la SGD

Inconvénient : l’apprentissage peut être compliqué/lent si le « bruit » est trop important 
    (exemple : taille du « minibatch » trop faible)

VI)

Gradient SGD 
(« minibatch »)

Gradient GD
 (« base de données »)

« bruit »
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Avantages et inconvénients de la SGD

Inconvénient : l’apprentissage peut être compliqué/lent si le « bruit » est trop important 
    (exemple : taille du « minibatch » trop faible)

Avantage 1 : ce « bruit » peut permettre de sortir ou d’éviter de mauvais minima locaux

VI)

Gradient SGD 
(« minibatch »)

Gradient GD
 (« base de données »)

« bruit »
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Avantages et inconvénients de la SGD

Inconvénient : l’apprentissage peut être compliqué/lent si le « bruit » est trop important 
    (exemple : taille du « minibatch » trop faible)

Avantage 1 : ce « bruit » peut permettre de sortir ou d’éviter de mauvais minima locaux

Avantage 2 : le gradient est très rapide à calculer

VI)

Gradient SGD 
(« minibatch »)

Gradient GD
 (« base de données »)

« bruit »
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Avantages et inconvénients de la SGD

Inconvénient : l’apprentissage peut être compliqué/lent si le « bruit » est trop important 
    (exemple : taille du « minibatch » trop faible)

Avantage 1 : ce « bruit » peut permettre de sortir ou d’éviter de mauvais minima locaux

Avantage 2 : le gradient est très rapide à calculer

Avantage 3 (empirique) : l’utilisation de petits « minibatches » (32-512) conduit à une 
meilleure généralisation que l’utilisation de grands « minibatches » 

Keskar, N., et al. "On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima.", ICLR 2017

VI)

Gradient SGD 
(« minibatch »)

Gradient GD
 (« base de données »)

« bruit »
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Avantages et inconvénients de la SGD

En pratique, on choisit une taille de « minibatch » de manière à occuper entièrement le GPU.

VI)

Gradient SGD 
(« minibatch »)

Gradient GD
 (« base de données »)

« bruit »
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Avantages et inconvénients de la SGD

En pratique, on choisit une taille de « minibatch » de manière à occuper entièrement le GPU.

Si on a besoin d’un « minibatch » plus grand…

● on peut faire de l’accumulation de gradient, c’est-à-dire faire plusieurs « forward » + « backward »

VI)

Gradient SGD 
(« minibatch »)

Gradient GD
 (« base de données »)

« bruit »
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Avantages et inconvénients de la SGD

En pratique, on choisit une taille de « minibatch » de manière à occuper entièrement le GPU.

Si on a besoin d’un « minibatch » plus grand…

● on peut faire de l’accumulation de gradient, c’est-à-dire faire plusieurs « forward » + « backward »

● ou on peut utiliser plusieurs GPUs qui traitent des « minibatches » en parallèle !

VI)

Gradient SGD 
(« minibatch »)

Gradient GD
 (« base de données »)

« bruit »
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Apprendre à « bien » prédire… sur de nouvelles données

epochs

Optimum

Sur-apprentissage

VI)
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Apprendre à « bien » prédire… sur de nouvelles données (suite)

epochs
Arrêt prématuré / Early stopping

VI)
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Résumé de l’étape d’apprentissage

1) Découper une fois pour toutes la base de données en 

une base d’apprentissage (« training set ») 

une base de validation (« validation set »)

     

VI)
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Résumé de l’étape d’apprentissage

1) Découper une fois pour toutes la base de données en 

une base d’apprentissage (« training set ») 

une base de validation (« validation set »)

2) Lancer une descente de gradient stochastique (SGD) avec arrêt prématuré

Au début d’une « epoch », découper la base d’apprentissage aléatoirement en « minibatches »

Faire une itération de SGD sur chaque « minibatch » :

A la fin d’une « epoch », calculer

Stocker la valeur actuelle de      si le coût de validation est plus faible que le précédent meilleur coût

Stopper l’entraînement lorsqu’on est en régime de « sur-apprentissage »

     

VI)
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Bonnes pratiques

● Lancer un apprentissage sur un seul « minibatch » jusqu’à obtention d’un coût 
d’apprentissage de zéro

VI)
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Bonnes pratiques

● Lancer un apprentissage sur un seul « minibatch » jusqu’à obtention d’un coût 
d’apprentissage de zéro

● Visualiser tout ce qu’il est possible de visualiser
– Entrées → plage de valeurs (erreur classique : les données ne sont pas normalisées)

– Sorties

– Valeurs des paramètres

– Valeur du pas d’apprentissage

– Coûts (d’apprentissage, de validation, ...)

– Gradients

– ... 

VI)
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Définir la valeur du pas d’apprentissage

Pas d’apprentissage

Pas d’apprentissage trop grand Pas d’apprentissage trop petit

VI)
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Définir la valeur du pas d’apprentissage (suite)

VI)

Solution 1 (la plus utilisée) : Tester différentes valeurs du pas d’apprentissage (« grid search ») en 
visualisant à chaque fois l’évolution du coût d’apprentissage (et du coût de validation)
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Définir la valeur du pas d’apprentissage (suite)

Smith, L. N. "Cyclical learning rates for training neural networks.", WACV 2017

● Lancer un entraînement en partant d’un pas très faible 
(e.g. 1e-7).

● A chaque itération (i.e à chaque minibatch), augmenter 
le pas.

● Récupérer la valeur du pas correspondant  au gradient 
le plus négatif.

VI)

Solution 1 (la plus utilisée) : Tester différentes valeurs du pas d’apprentissage (« grid search ») en 
visualisant à chaque fois l’évolution du coût d’apprentissage (et du coût de validation)

Solution 2 (rarement utilisée) :
Coût 
d’apprentissage

Pas d’apprentissage

plateau

descente

explosion
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Evolution du pas d’apprentissage durant l’optimisation

Loshchilov, I., & Hutter, F.  "SGDR: Stochastic gradient descent with warm restarts." 2016

● Constant

● Décroissant

● Cyclique

● Réduction sur plateau

VI)
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SGD avec moment (« SGD with momentum »)

SGD

Source : https://image.slidesharecdn.com/

VI)
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SGD avec moment (« SGD with momentum »)

SGD

SGD avec moment

Source : https://image.slidesharecdn.com/

VI)
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SGD avec moment (« SGD with momentum »)

SGD

SGD avec moment

Source : https://image.slidesharecdn.com/

VI)

Moyenne mobile exponentielle du gradient
(permet de « lisser » le gradient)
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« Adam: A Method for Stochastic Optimization » 

Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic gradient descent. In ICLR: International Conference on Learning Representations.

VI)

Carré de chaque élément de 

Racine carrée de chaque élément de 
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Autres techniques de régularisation

VI)

Régularisation : technique permettant de réduire le sur-apprentissage  

Exemple déjà vu  →  « Early Stopping »
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Autres techniques de régularisation

VI)

Régularisation : technique permettant de réduire le sur-apprentissage  

Exemple déjà vu  →  « Early Stopping »

« Dropout » d’une couche FC 

Lors de l’entraînement, mettre aléatoirement p % des colonnes de        à zéro 
(équivaut à mettre à zéro aléatoirement p % des « neurones » d’entrée)
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Autres techniques de régularisation

VI)

Régularisation : technique permettant de réduire le sur-apprentissage  

Exemple déjà vu  →  « Early Stopping »

« Dropout » d’une couche FC 

Lors de l’entraînement, mettre aléatoirement p % des colonnes de        à zéro 
(équivaut à mettre à zéro aléatoirement p % des « neurones » d’entrée)

« Weight decay » 

→ AdamW

Loshchilov, I., Hutter, F. (2019). Decoupled Weight Decay Regularization. In ICLR: International Conference on Learning Representations.

Tire les paramètres 
vers zéro



82

A priori un tel apprentissage ne devrait PAS fonctionner

Raisonnement a priori

 descente de gradient où 
        est non-convexe 

mauvais minimum local 

où

VI)
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A priori un tel apprentissage ne devrait PAS fonctionner

Zhang. C et al. (2017). Understanding Deep Learning
 requires rethinking generalization.  ICLR

Raisonnement a priori

 descente de gradient où 
        est non-convexe 

mauvais minimum local 

où

Résultats empiriques sur CIFAR10

Zéro !
 
Un des minima globaux
 a été atteint.

VI)

C
oû

t 
d’

ap
pr

en
ti

ss
ag

e

epochs
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A priori un tel apprentissage ne devrait PAS fonctionner (suite)
Raisonnement a priori

Coût d’apprentissage atteint zéro

Le réseau a appris « par cœur » à 
associer la bonne étiquette pour 

chaque exemple de la base 
d’apprentissage

Les performances de généralisation 
seront très mauvaises 

VI)
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A priori un tel apprentissage ne devrait PAS fonctionner (suite)

Zhang. C et al. (2017). Understanding Deep Learning requires 
rethinking generalization.  ICLR

Raisonnement a priori

Coût d’apprentissage atteint zéro

Le réseau a appris « par cœur » à 
associer la bonne étiquette pour 

chaque exemple de la base 
d’apprentissage

Les performances de généralisation 
seront très mauvaises 

Résultats empiriques sur CIFAR10
Apprentissage avec de 
fausses étiquettes

 CIFAR10 → 10 classes
Résultat attendu : Le réseau 
a appris à partir de fausses 
étiquettes donc il obtient de 
mauvaises performances 
quand on lui présente des 
exemples avec les vraies 
étiquettes.

VI)

C
oû

t 
de

 v
al

id
ati

on
Taux de fausses étiquettes dans la 
base d’apprentissage
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A priori un tel apprentissage ne devrait PAS fonctionner (suite)

Zhang. C et al. (2017). Understanding Deep Learning requires 
rethinking generalization.  ICLR

Raisonnement a priori

Coût d’apprentissage atteint zéro

Le réseau a appris « par cœur » à 
associer la bonne étiquette pour 

chaque exemple de la base 
d’apprentissage

Les performances de généralisation 
seront très mauvaises 

Résultats empiriques sur CIFAR10
Apprentissage avec de 
fausses étiquettes

 CIFAR10 → 10 classes
Résultat attendu : Le réseau 
a appris à partir de fausses 
étiquettes donc il obtient de 
mauvaises performances 
quand on lui présente des 
exemples avec les vraies 
étiquettes.

Apprentissage avec les vraies étiquettes 
→ Résultat inattendu : Quand le réseau apprend à partir de 
vraies étiquettes, il a une bonne capacité de généralisation.

VI)

C
oû

t 
de

 v
al

id
ati

on
Taux de fausses étiquettes dans la 
base d’apprentissage
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A priori un tel apprentissage ne devrait PAS fonctionner (suite)

VI)

Comment se fait-il que l’étape d’apprentissage ait permis de trouver un minimum global qui généralise bien 
(sachant qu’il existe des minima globaux qui généralisent mal) ?

1) Biais introduit par l’architecture (« inductive bias »)

2) Biais introduit par la descente de gradient stochastique 

https://guillefix.me/nnbias/

https://hackmd.io/75gt3X6WQbu1_A3pF8svWg

Valle-Pérez. G et al. (2019). Deep learning generalizes because the parameter-function map is biased towards simple functions.  ICLR

Smith, S., et al. (2021). On the origin of implicit regularization on stochastic gradient descent. ICLR

https://guillefix.me/nnbias/
https://hackmd.io/75gt3X6WQbu1_A3pF8svWg
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Résumé des ingrédients du « Deep Learning »

1) Grande base de données étiquetées

2) « Bonne » architecture de réseau de neurones profond

3) Grande capacité de calculs en parallèle (GPU) 

« Perceptron » multicouche, Réseau de neurones à convolution, Transformer

VI)

Et optimisation par descente de gradient stochastisque (AdamW, etc.)


